
Math 1600 Lecture 23, Section 2, 29 Oct 2014

Announcements:

Read Section 4.2 for next class (Monday). Work through recommended
homework questions.

Midterms will be returned in tutorials next week. Grades should be posted
to OWL by today. Solutions will be posted soon. Please do not e-mail us
about grades until you have seen your midterm.

Tutorials: Quiz next week covers until what we get to on Monday, focusing
on the material after the midterm material. Details Monday.

Help Centers: Monday-Friday 2:30-6:30 in MC 106, but not Thursday and
Friday this week (fall break).

Review of last lecture: Section 3.6: Linear
Transformations

New linear transformations from old

If  and , then the composition of  and  is
the transformation  defined by

If  and  are linear, it is easy to check that this new transformation 
is automatically linear.

Theorem 3.32: .

We write  for the identity transformation, which is defined by .
Then , the identity matrix.

Inverses of Linear Transformations

T : →Rm Rn S : →Rn Rp S T
S ∘ T : →Rm Rp

(S ∘ T )( ) = S(T ( )).x⃗ x⃗ 

S T S ∘ T

[S ∘ T ] = [S][T ]

I I( ) =x⃗ x⃗ 
[I] = I
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Definition: Let  and  be linear transformations from  to . Then 
and  are inverse transformations if  and . When
this is the case, we say that  and  are invertible and are inverses.

The same argument as for matrices shows that an inverse is unique when it

exists, so we write  and .

Theorem 3.33: Let  be a linear transformation. Then  is
invertible if and only if  is an invertible matrix. In this case,

.

Review continued: Section 3.7: Markov Chains

A Markov chain has states  and transition probabilities  for

moving from state  to state  at each time step. These probabilities are
constant and depend only on the current state.

 is a stochastic matrix, which means that it is square, has non-negative
entries, and the columns each sum to .

If  is the state vector after  time steps, then .

A state  with  is called a steady state vector. That is,

, or . To find a non-trivial steady state vector for
this Markov chain, we solve the homogeneous system with coefficient
matrix .

Theorem: Every Markov chain has a non-trivial steady state vector.

This appears in the book as Theorem 4.30 in Section 4.6, but I proved it in
class.

New material: Section 4.1: Eigenvalues and eigenvectors

We saw when studying Markov chains that it was important to find solutions
to the system , where  is a square matrix. We did this by solving

.

S T Rn Rn S
T S ∘ T = I T ∘ S = I

S T

S = T −1 T = S−1

T : →Rn Rn T
[T ]

[ ] = [TT −1 ]−1

1, 2, … n Pij

j i

P
1

x⃗ k k = Px⃗ k+1 x⃗ k

x⃗ P =x⃗ x⃗ 
− P =x⃗ x⃗ 0⃗ (I − P) =x⃗ 0⃗ 

I − P

A =x⃗ x⃗ A

(I − A) =x⃗ 0⃗ 
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More generally, a central problem in linear algebra is to find  such that 
is a scalar multiple of .

Definition: Let  be an  matrix. A scalar  (lambda) is called an
eigenvalue of  if there is a nonzero vector  such that . Such a
vector  is called an eigenvector of  corresponding to .

We showed that  is an eigenvalue of every stochastic matrix .

Example A: Since

we see that  is an eigenvalue of  with eigenvector .

Example 4.2: Show that  is an eigenvalue of  and

determine all eigenvectors corresponding to this eigenvalue.

Solution: We are looking for nonzero solutions to . This is the

same as , so we compute the coefficient matrix:

The columns are linearly dependent, so the null space of  is nonzero.
So  has a nontrivial solution, which is what it means for  to be an
eigenvalue.

To find the eigenvectors, we compute the null space of :

x⃗ Ax⃗ 
x⃗ 

A n × n λ
A x⃗ A = λx⃗ x⃗ 

x⃗ A λ

λ = 1 P

[ ] [ ] = [ ] = 2 [ ] ,
1
2

2
−2

2
1

4
2

2
1

2 [ ]1
2

2
−2

[ ]2
1

5 A = [ ]1
4

2
3

A = 5x⃗ x⃗ 
(A − 5I) =x⃗ 0⃗ 

A − 5I = [ ] − [ ] = [ ]1
4

2
3

5
0

0
5

−4
4

2
−2

A − 5I
A = 5x⃗ x⃗ 5

A − 5I

[ A − 5I ∣ ] = [ ] [ ]0⃗ −4
4

2
−2

0
0

→
1
0

−1/2
0

0
0
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The solutions are of the form . So the eigenvectors for

the eigenvalue  are the nonzero multiples of .

Definition: Let  be an  matrix and let  be an eigenvalue of . The
collection of all eigenvectors corresponding to , together with the zero
vector, is a subspace called the eigenspace of  and is denoted . In
other words,

In the above Example, .

Example: Give an eigenvalue of the matrix  and compute its

eigenspace.

Since  for every ,  is an eigenvalue, and is the only eigenvalue.

In this case, .

Example: If  is an eigenvalue of , what is another name for ?

 is the null space of . That is, .

An applet illustrating the transformation , for  the 
matrix shown. The black vector is the input , and the blue vector is the
output .

[ ] = t [ ]t/2
t

1/2
1

5 [ ]1/2
1

A n × n λ A
λ

λ Eλ

= null(A − λI).Eλ

= span {[ ]}E5
1/2

1

A = [ ]2
0

0
2

A = 2x⃗ x⃗ x⃗ 2
=E2 R2

0 A E0

E0 A − 0I = A = null(A)E0

: →TA R2 R2 A 2 × 2
x⃗ 

( ) = ATA x⃗ x⃗ 
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1 2 3-1-2-3

1

2

3

-1

-2

-3

Reflection in -axis.
Reflection in -axis.
Projection onto -axis.
Rotation by  ccw.
Rotate and scale.
Example A from above.
A rank 1 example.
Custom: 

(Click to move input vector. Hit 't' to toggle modes. Click on a phrase to the right to change the
matrix. Enter four numbers, separated by spaces, for a custom matrix.)

Other applets: See also this java applet. (Instructions.) If that doesn't
work, here is another applet.

Read Example 4.3 in the text for a  example.

Finding eigenvalues

Given a specific number , we now know how to check whether  is an
eigenvalue: we check whether  has a nontrivial null space. And we
can find the eigenvectors by finding the null space.

We also have a geometric way to find all eigenvalues , at least in the
 case. Is there an algebraic way to check all  at once?

By the fundamental theorem of invertible matrices,  has a nontrivial
null space if and only if it is not invertible. For  matrices, we can check
invertibility using the determinant!

Example: Find all eigenvalues of .

A = [ ]1
0

0
−1

= [ ] A = [ ]x⃗ 
2.0
2.0

x⃗ 
2.0

−2.0

x
y

x
90∘

3 × 3

λ λ
A − λI

λ
2 × 2 λ

A − λI
2 × 2

A = [ ]1
2

2
−2
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Solution: We need to find all  such that .

so we need to solve the quadratic equation . This can be
factored as , and so  or , the same as we
saw above and with the applet.

We proceed to find the eigenvectors for these eigenvalues, by solving

 and . On board, if time.

Appendix D provides review of polynomials and their solutions. Look it over
now. We'll discuss it in Lecture 26.

See also Example 4.5 in text.

So now we know how to handle the  case. To handle larger matrices,
we need to learn about their determinants, which is Section 4.2.

We won't discuss eigenvectors and eigenvalues for matrices over . We
will discuss complex numbers  in a later lecture.

λ det(A − λI) = 0

det(A − λI)= det [ ]1 − λ

2
2

−2 − λ

= (1 − λ)(−2 − λ) − 4 = + λ − 6,λ2

+ λ − 6 = 0λ2

(λ − 2)(λ + 3) = 0 λ = 2 λ = −3

(A − 2I) =x⃗ 0⃗ (A + 3I) =x⃗ 0⃗ 

2 × 2

Zm

C
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