Math 1600 Lecture 24, Section 2, 3 Nov 2014

Announcements:

Continue **reading** Section 4.2 for next class. Work through recommended homework questions.

Drop date: Wednesday, November 5.

Tutorials: Quiz this week covers 3.6, 3.7 (Markov chains) and 4.1. Midterms returned in tutorials. Solutions available. Average: 47.5/70 = 68%.

Office hour: Monday, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial summary of Section 4.1: Eigenvalues and eigenvectors

Definition: Let A be an $n \times n$ matrix. A scalar λ (lambda) is called an **eigenvalue** of A if there is a nonzero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$. Such a vector \vec{x} is called an **eigenvector** of A corresponding to λ .

Question: Why do we only consider square matrices here?

Example A: Since

we

$$\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix},$$

see that 2 is an eigenvalue of
$$\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$
 with eigenvector
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

In general, the eigenvectors for a given eigenvalue λ are the nonzero solutions to $(A - \lambda I) \vec{x} = \vec{0}$.

We worked out many examples, and used an applet to understand the

geometry.

Finding eigenvalues

Given a specific number λ , we know how to check whether λ is an eigenvalue: we check whether $A - \lambda I$ has a nontrivial null space. (And we can find the eigenvectors by finding the null space.)

By the fundamental theorem of invertible matrices, $A - \lambda I$ has a nontrivial null space if and only if it is not invertible. For 2×2 matrices, we can check invertibility using the determinant!

Example: Find all eigenvalues of $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$.

Solution: We need to find all λ such that $\det(A - \lambda I) = 0$.

$$\det(A-\lambda I) = \detegin{bmatrix} 1-\lambda & 2\ 2 & -2-\lambda \end{bmatrix} \ = (1-\lambda)(-2-\lambda)-4 = \lambda^2+\lambda-6,$$

so we need to solve the quadratic equation $\lambda^2 + \lambda - 6 = 0$. This can be factored as $(\lambda - 2)(\lambda + 3) = 0$, and so $\lambda = 2$ or $\lambda = -3$ are the eigenvalues.

So now we know how to handle the 2×2 case. To handle larger matrices, we need to learn about their determinants, which is Section 4.2.

New material: Section 4.2: Determinants

Recall that we defined the determinant of a 2 imes 2 matrix $A=egin{bmatrix}a&b\\c&d\end{bmatrix}$ by

 $\det A = ad - bc$. We also write this as

$$\det A = |A| = egin{array}{c} a & b \ c & d \end{bmatrix} = ad - bc.$$

For a 3 imes 3 matrix A, we define

If we write A_{ij} for the matrix obtained from A by deleting the ith row and the jth column, then this can be written

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13} = \sum_{j=1}^3 (-1)^{1+j} \, a_{1j} \det A_{1j}$$

We call $\det A_{ij}$ the (i, j)-minor of A.

Example: On board.

Example 4.9 in the book shows another method, that doesn't generalize to larger matrices.

Determinants of n imes n matrices

Definition: Let $A = [a_{ij}]$ be an n imes n matrix. Then the **determinant** of A is the scalar

$$\det A = |A| = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n} \ = \sum_{j=1}^n (-1)^{1+j} a_{1j} \det A_{1j}.$$

This is a recursive definition!

Example:
$$A = egin{pmatrix} 2 & 0 & 1 & 0 \ 3 & 1 & 0 & 0 \ 1 & 0 & 2 & 3 \ 2 & 0 & 4 & 5 \ \end{bmatrix}$$
, on board.

The computation can be very long if there aren't many zeros! We'll learn some better methods.

Note that if we define the determinant of a 1×1 matrix A = [a] to be a, then the general definition works in the 2×2 case as well. So, in this context, |a| = a (not the absolute value!)

It will make the notation simpler if we define the (i, j)-cofactor of A to be

$$C_{ij}=\left(-1
ight) ^{i+j}\det A_{ij}.$$

Then the definition above says

$$\det A = \sum_{j=1}^n \, a_{1j} C_{1j}.$$

This is called the **cofactor expansion along the first row**. It turns out that *any* row or column works!

Theorem 4.1 (The Laplace Expansion Theorem): Let A be any $n \times n$ matrix. Then for each i we have

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = \sum_{j=1}^n \, a_{ij}C_{ij}$$

(cofactor expansion along the ith row). And for each j we have

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj} = \sum_{i=1}^n \, a_{ij}C_{ij}$$

(cofactor expansion along the jth column).

The book proves this result at the end of this section, but we won't cover the proof.

The signs in the cofactor expansion form a checkerboard pattern:

 $\begin{bmatrix} + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$

Example: Redo the previous 4×4 example, saving work by expanding along the second column. On board. Note that the +- pattern for the 3×3 determinant is not from the original matrix.

Example: A 4×4 triangular matrix, on board.

A **triangular** matrix is a square matrix that is all zero below the diagonal or above the diagonal.

Theorem 4.2: If A is triangular, then $\det A$ is the product of the diagonal entries.

Better methods

Laplace Expansion is convenient when there are appropriately placed zeros in the matrix, but it is not good in general. It produces n! different terms (explain). A supercomputer would require 10^{30} times the age of the universe just to compute a 50×50 determinant in this way. And that's a puny determinant for real-world applications.

So how do we do better? Like always, we turn to row reduction! These properties will be what we need:

Theorem 4.3: Let A be a square matrix.

a. If A has a zero row, then $\det A = 0$. **b.** If B is obtained from A by interchanging two rows, then $\det B = -\det A$. c. If A has two identical rows, then $\det A = 0$. **d.** If B is obtained from A by multiplying a row of A by k, then $\det B = k \det A.$

e. If A, B and C are identical in all rows except the ith row, and the ith row of C is the sum of the ith rows of A and B, then $\det C = \det A + \det B$. **f.** If C is obtained from A by adding a multiple of one row to another, then $\det C = \det A$.

All of the above statements are true with rows replaced by columns.

Explain verbally, making use of:

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = \sum_{j=1}^n |a_{ij}C_{ij}|$$

The following will help explain how (f) follows from (d) and (e):

$$A = \begin{bmatrix} \vec{r}_1 \\ \vec{r}_2 \\ \vec{r}_3 \\ \vec{r}_4 \end{bmatrix}, \quad B = \begin{bmatrix} \vec{r}_1 \\ 5\vec{r}_4 \\ \vec{r}_3 \\ \vec{r}_4 \end{bmatrix}, \quad B' = \begin{bmatrix} \vec{r}_1 \\ \vec{r}_4 \\ \vec{r}_3 \\ \vec{r}_4 \end{bmatrix}, \quad C = \begin{bmatrix} \vec{r}_1 \\ \vec{r}_2 + 5\vec{r}_4 \\ \vec{r}_3 \\ \vec{r}_4 \end{bmatrix}$$

 $\det C = \det A + \det B = \det A + 5 \det B' = \det A + 5(0) = \det A$

The bold statements are the ones that are useful for understanding how row operations change the determinant.

Example: Use row operations to compute $\det A$ by reducing to triangular

form, where
$$A=egin{bmatrix} 2&4&6&8\ 1&4&1&2\ 2&2&12&8\ 1&2&3&9 \end{bmatrix}$$

Solution:

	$\lceil 2 \rangle$	4	6	8]		1	2	3	4]	
	1	4	1	2	$\xrightarrow{(1/2)R_1}$	1	4	1	2	
	2	2	12	8		2	2	12	8	
	$\lfloor 1$	2	3	9		_1	2	3	9	
$R_2{-}R_1$	_			_		_			_	
$R_{2}-2R_{1}$	[1	2	3	4		$\lceil 1 \rceil$	2	3	4]	
$\xrightarrow{R_4-R_1}$	0	2	-2	-2	$\xrightarrow{R_3+R_2}$	0	2	-2	-2	
	0	-2	6	0		0	0	4	-2	
	0	0	0	5		0	0	0	5	

The determinant of the last matrix is (1)(2)(4)(5)=40, so the determinant of the original matrix is 80