
Math 1600 Lecture 24, Section 2, 3 Nov 2014

Announcements:

Continue reading Section 4.2 for next class. Work through recommended
homework questions.

Drop date: Wednesday, November 5.

Tutorials: Quiz this week covers 3.6, 3.7 (Markov chains) and 4.1. Midterms
returned in tutorials. Solutions available. Average: 47.5/70 = 68%.

Office hour: Monday, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial summary of Section 4.1: Eigenvalues and
eigenvectors

Definition: Let  be an  matrix. A scalar  (lambda) is called an
eigenvalue of  if there is a nonzero vector  such that . Such a
vector  is called an eigenvector of  corresponding to .

Question: Why do we only consider square matrices here?

Example A: Since

we see that  is an eigenvalue of  with eigenvector .

In general, the eigenvectors for a given eigenvalue  are the nonzero

solutions to .

We worked out many examples, and used an applet to understand the
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geometry.

Finding eigenvalues

Given a specific number , we know how to check whether  is an
eigenvalue: we check whether  has a nontrivial null space. (And we
can find the eigenvectors by finding the null space.)

By the fundamental theorem of invertible matrices,  has a nontrivial
null space if and only if it is not invertible. For  matrices, we can check
invertibility using the determinant!

Example: Find all eigenvalues of .

Solution: We need to find all  such that .

so we need to solve the quadratic equation . This can be
factored as , and so  or  are the
eigenvalues.

So now we know how to handle the  case. To handle larger matrices,
we need to learn about their determinants, which is Section 4.2.

New material: Section 4.2: Determinants

Recall that we defined the determinant of a  matrix  by

. We also write this as

λ λ
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For a  matrix , we define

If we write  for the matrix obtained from  by deleting the th row and

the th column, then this can be written

We call  the -minor of .

Example: On board.

Example 4.9 in the book shows another method, that doesn't generalize to
larger matrices.

Determinants of  matrices

Definition: Let  be an  matrix. Then the determinant of 

is the scalar

This is a recursive definition!

Example: , on board.

The computation can be very long if there aren't many zeros! We'll learn
some better methods.
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Note that if we define the determinant of a  matrix  to be ,
then the general definition works in the  case as well. So, in this
context,  (not the absolute value!)

It will make the notation simpler if we define the -cofactor of  to be

Then the definition above says

This is called the cofactor expansion along the first row. It turns out
that any row or column works!

Theorem 4.1 (The Laplace Expansion Theorem): Let  be any 
matrix. Then for each  we have

(cofactor expansion along the th row). And for each  we have

(cofactor expansion along the th column).

The book proves this result at the end of this section, but we won't cover
the proof.

The signs in the cofactor expansion form a checkerboard pattern:

1 × 1 A = [a] a
2 × 2

|a| = a

(i, j) A

= (−1 det .Cij )i+j
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j=1

n

a1jC1j

A n × n
i

det A = + + ⋯ + =ai1Ci1 ai2Ci2 ainCin ∑
j=1

n

aijCij

i j

det A = + + ⋯ + =a1jC1j a2jC2j anjCnj ∑
i=1

n

aijCij

j

4 of 7



Example: Redo the previous  example, saving work by expanding
along the second column. On board. Note that the  pattern for the

 determinant is not from the original matrix.

Example: A  triangular matrix, on board.

A triangular matrix is a square matrix that is all zero below the diagonal or
above the diagonal.

Theorem 4.2: If  is triangular, then  is the product of the diagonal
entries.

Better methods

Laplace Expansion is convenient when there are appropriately placed zeros
in the matrix, but it is not good in general. It produces  different terms

(explain). A supercomputer would require  times the age of the
universe just to compute a  determinant in this way. And that's a
puny determinant for real-world applications.

So how do we do better? Like always, we turn to row reduction! These
properties will be what we need:

Theorem 4.3: Let  be a square matrix.

a. If  has a zero row, then .
b. If  is obtained from  by interchanging two rows, then

.
c. If  has two identical rows, then .
d. If  is obtained from  by multiplying a row of  by , then
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.
e. If ,  and  are identical in all rows except the th row, and the th row
of  is the sum of the th rows of  and , then .
f. If  is obtained from  by adding a multiple of one row to another, then

.

All of the above statements are true with rows replaced by columns.

Explain verbally, making use of:

The following will help explain how (f) follows from (d) and (e):

The bold statements are the ones that are useful for understanding how row
operations change the determinant.

Example: Use row operations to compute  by reducing to triangular

form, where .

Solution:
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The determinant of the last matrix is , so the
determinant of the original matrix is 
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