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Math 1600 Lecture 26, Section 2, 7 Nov 2014

Announcements:

Today we finish Section 4.2, discuss Appendix D and start Section 4.3. Continue
reading Section 4.3 and Appendix D for next class. We'll also learn how Google
ranks page next class. Work through recommended homework questions.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.
Review Questions

True/false: det(AB) = (det A)(det B).
True/false: det(A + B) = det A + det B.
Question: det(3;) = 3*det I, = 3> =9

0 0 a d e f
Question: (0 b ¢|=—|0 b c|=—abd (nottriangular!)
d e f 0 0 a

Partial review of last class: Cofactors and Cramer's Rule

For an n X m matrix A, write A;; for the matrix obtained from A by deleting the
ith row and the jth column. Then det A;; is called the (¢, j)-minor of A, and

Cij = (—1)i+j det AZJ
is called the (i, j)-cofactor of A.

Notation: If A is an m X 1 matrix and b € R", we write A;(b) for the matrix

—

obtained from A by replacing the ith column with the vector b:
Ai(b) =[Gy ---d;—1bTsy1---Gp |

Theorem 4.11: Let A be an invertible n X n matrix and let b be in R". Then the
unique solution Z of the system AZ = b has components



_ det(44(B))

xT; = ot A fort=1,...,n

New material: Matrix Inverse using the Adjoint

Suppose A is invertible. We'll use Cramer's rule to find a formula for X = AL
We know that AX = I, so the jth column of X satisfies AZ; = €;. By Cramer's
Rule,

o det(Az(éj))
i = det A

By expanding along the 2th column, we see that

det(A;(€;)) = Cjs

So
1 1 T
ij = —— Cj, 1e, X=——1Cj
ij detAC] € det A [CJ}
The matrix
(C11 Oy Ch1 |
. . Cia O Ch2
adjd := [Cy] = [Cy]" = .
_Cln C2n Cnn _

is called the adjoint of A.

Theorem 4.12: If A is an invertible matrix, then

1
A =
det A

adjA
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2] , then the cofactors are
011: —I—det[d] = —|—d 012: - det[c] = —C
021: - det[b] =-b 022: —I—det[a] = +a

a
Example: If A = [
c

so the adjoint matrix is

adjA = [ d _b]

—C a

and

1 1 d b
Al = djA =
det A det A {—c a]

as we saw before.

See Example 4.17 in the text for a 3 X 3 example. This is not generally a good
computational approach. It's importance is theoretical.

Appendix D: Polynomials

You should read this Appendix yourself. | will cover it briefly.

A polynomial is a function p of a single variable x that can be written in the form
p(z) = ag + a1z + azx® + - + apx"

where the coefficients a; are constants. The highest power of x appearing with a
non-zero coefficient is called the degree of p.

3
6556

Examples: 2 — 0.5z + /223, In perall e 111(65”03_33’) = bx3 — 3z

Non-examples: \/z, 1/z, cos(z), In(z).
(The text gives more examples, non-examples and explanations.)

Addition of polynomials is easy:
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(1422 — 42®) + (3 — 32 + 62°) = 4 + 2z — 32* + 22°

To multiply polynomials, you use the distributive law and collect terms:

(z +3)(1 + 2z + 42?)= (1 + 2z + 42?) + 3(1 + 2z + 4z?)
— x4+ 222 + 423 + 3+ 62 + 1222
— 3+ Tz + 142? + 428

Note that deg(f(z)g(z)) = deg(f(z)) + deg(g(x)).

If f and g are polynomials, sometimes you can find a polynomial g such that
f(z) = g(x)q(z), and sometimes you can't. If you can, then we say that g is a
factor of f.

Example: Is (z — 2) a factor of 22 — z — 27?

Solution: If it is, then the quotient has degree 1. So suppose

2’ —z—2=(z—2)(ax +b). Then ax? = 22, so a = 1. And

—x = —2ax + bxr = —2x + bx, so b = 1. Check the constant term: —2 = —2b.
It works, so 2> —x — 2 = (z — 2)(z + 1), and the answer is "yes".

Example: Is (z — 2) a factor of 2% + z — 27?

Solution: If it is, then the quotient has degree 1. So suppose
r?+z—2=(z—2)(ax +b). Then ax® = x?, so a = 1. And

r = —2ax + bx = —2x + bx, so b = 3. Check the constant term: —2 = —2b.
Nope, so the answer is "no".

The above ad hoc method works for a degree 1 polynomial. For higher degrees,
one can use long division (see Example D.4). But the degree 1 case will be most
important to us, and is made even simpler by the following result:

Theorem D.2 (The Factor Theorem): Let f be a polynomial and let a be a
constant. Then f(a) = 0 if and only if x — a is a factor of f(x).

When f(a) = 0, we say that a is a zero of f or a root of f.

It is clear that if f(z) = (x — a)q(x), then f(a) = 0. The book explains the other
direction.

Once you find a zero, you can use the ad hoc method shown above to find the



other factor q. We'll see more examples soon.

Our interest will be in finding all zeros of a polynomial f of degree n. By the
above, if you find a zero a, then f(z) = (x — a)q(x), where ¢ has degree n — 1.
If there is another root b of f, it must be a root of g, and so g will factor as

q(xz) = (& — b)r(x), where r has degree n — 2. Since the degrees are going
down by one, there can be at most n distinct roots in total:

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of
degree n has at most n distinct roots.

Section 4.3: Eigenvalues and Eigenvectors

Recall from Section 4.1:

Definition: Let A be an n X n matrix. A scalar X (lambda) is called an
eigenvalue of A if there is a nonzero vector Z such that AZ = AZ. Such a vector
Z is called an eigenvector of A corresponding to .

The eigenvectors for a given eigenvalue \ are the nonzero solutions to

(A— M)z = 0.

Definition: The collection of all solutions to (A — AI)Z = 0 is a subspace called
the eigenspace of \ and is denoted Fy. In other words,

E) = null(4A — AI).
It consists of the eigenvectors plus the zero vector.

By the fundamental theorem of invertible matrices, A — AI has a nontrivial null
space if and only if it is not invertible, and we now know that this is the case if and

only if det(A — AI) = 0.

The expression det(A — AI) is always a polynomial in A. For example, when
ol
A= ,
c d
det(A— D)= |27 °
c d— \
=2 — (a+ d)\ + (ad — be)

‘:(a—)\)(d—A)—bc

50f7
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If Ais 3 X 3, then det(A — AI) is equal to

age — A Q23 as1 a93

(a11 — A)

|—|—a13

as1 G — A
— a2

asgx a3 — A asy asz — A asi aso

which is a degree 3 polynomial in A.
Similarly, if A isn x n, det(A — AI) will be a degree m polynomial in A. It is

called the characteristic polynomial of A4, and det(A — AI) = 0 is called the
characteristic equation.

Finding eigenvalues and eigenspaces: Let A be an n X n matrix.

1. Compute the characteristic polynomial det(A — AI).

2. Find the eigenvalues of A by solving the characteristic equation

det(A — AI) = 0.

3. For each eigenvalue ), find a basis for Ey = null(A — AI) by solving the
system (A — A\I)Z = 0.

So we need to get good at solving polynomial equations. Solutions are called
zeros or roots. We saw above that a degree n polynomial has at most n distinct
roots. Therefore:

Theorem: An nn X n matrix A has at most n distinct eigenvalues.

0

Example 4.18: Find the eigenvalues and eigenspaces of A = 0
2 -5 4
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Solution: 1. On board, compute the characteristic polynomial:

det(A — M) = =X + 42 — 5A + 2

2. To find the roots, it is often worth trying a few small integers to start. We see
that A = 1 works. So by the factor theorem, we know A — 1 is a factor:

XA —BA 2= -1 (- +31-2)

Now we need to find roots of —\? + 3\ — 2. Again, A = 1 works, and this factors
as —(A—1)(A —2).So

det(A— M) =X +4X2 —B5A+2=—-(A—1)’(A—2)
and the rootsare A = 1 and A = 2.

3. To find the A = 1 eigenspace, we do row reduction:

—1 1 00 1 0 =110
[A—T1|0]= O -1 1{0|]—]0 1 —-110
2 -5 3|0 0 0 00

We find that 3 = t is free and 1 = T2 = x3, SO

t 1
E = t = span 1
t

So | 1| is a basis of the eigenspace corresponding to A = 1. Check!

Finding a basis for F5 is similar; see text.



