
Math 1600 Lecture 27, Section 2, 10 Nov 2014

Announcements:

Today we continue with 4.3. Read 4.3 and Appendix C for next class. Work
through recommended homework questions.

Tutorials: Quiz 7 covers 4.2, the parts of Appendix D that we covered, and
the part of 4.3 we finish today. No complex eigenvalues/roots.

Office hour: Monday, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Question: If  is invertible, how do  and  compare?

They are equal:

Partial review of last class: Section 4.3

Definition: If  is ,  will be a degree  polynomial in .
It is called the characteristic polynomial of , and  is
called the characteristic equation.

By the fundamental theorem of invertible matrices, the solutions to the
characteristic equation are exactly the eigenvalues.

Finding eigenvalues and eigenspaces: Let  be an  matrix.

1. Compute the characteristic polynomial .
2. Find the eigenvalues of  by solving the characteristic equation

.
3. For each eigenvalue , find a basis for the eigenspace

P det A det( AP)P −1

det( AP)P −1 = det( ) det(A) det(P)P −1

= det(A) det(P) = det A.
1

det(P)

A n × n det(A − λI) n λ
A det(A − λI) = 0

A n × n

det(A − λI)
A

det(A − λI) = 0
λ
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 by solving the system .

So we need to get good at solving polynomial equations. Solutions are
called zeros or roots.

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of
degree  has at most  distinct roots.

Therefore:

Theorem: An  matrix  has at most  distinct eigenvalues.

Also:

Theorem D.2 (The Factor Theorem): Let  be a polynomial and let  be
a constant. Then  is a zero of  (i.e. ) if and only if  is a
factor of  (i.e.  for some polynomial ).

New material: 4.3 continued

A root  of a polynomial  implies that . Sometimes, 

is also a root of , as we found above. Then . The

largest  such that  is a factor of  is called the multiplicity of the
root  in .

In the case of an eigenvalue, we call its multiplicity in the characteristic
polynomial the algebraic multiplicity of this eigenvalue.

We also define the geometric multiplicity of an eigenvalue  to be the
dimension of the corresponding eigenspace.

Example 4.19: Find the eigenvalues and eigenspaces of

. Do partially, on board.

In this case, we find that  has algebraic multiplicity 2 and geometric
multiplicity 2.

= null(A − λI)Eλ (A − λI) =x⃗ 0⃗ 

n n

n × n A n

f a
a f(x) f(a) = 0 x − a

f(x) f(x) = (x − a)g(x) g

a f f(x) = (x − a)g(x) a

g(x) f(x) = (x − a h(x))2

k (x − a)k
f

a f

λ

A =
⎡
⎣⎢

−1
3
1

0
0
0

1
−3
−1

⎤
⎦⎥

λ = 0
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These multiplicities will be important in Section 4.4.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its
main diagonal (repeated according to their algebraic multiplicity).

Example: If , then

so the eigenvalues are  (with algebraic multiplicity 2) and  (with
algebraic multiplicity 1).

Question: What are the eigenvalues of a diagonal matrix?

The eigenvalues are the diagonal entries.

Question: What are the eigenvalues of ?

The characteristic polynomial is

so the eigenvalues are 2 and -2. Trick question.

Question: How can we tell whether a matrix  is invertible using
eigenvalues?

 is invertible if and only if 0 is not an eigenvalue, because 0 being an
eigenvalue is equivalent to  being non-trivial, which is equivalent to

 not being invertible, by the fundamental theorem.

So we can extend the fundamental theorem with two new entries:

A =
⎡
⎣⎢

1
2
4

0
3
5

0
0
1

⎤
⎦⎥

det(A − λI) = = (1 − λ (3 − λ),
∣

∣

∣
∣

1 − λ

2
4

0
3 − λ

5

0
0

1 − λ

∣

∣

∣
∣ )2

λ = 1 λ = 3

[ ]0
1

4
0

= − 4 = (λ − 2)(λ + 2),
∣
∣
∣
−λ

1
4

−λ

∣
∣
∣ λ2

A

A
null(A)

A
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Theorem 4.17: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .
f. 
g. 
h. The columns of  are linearly independent.
i. The columns of  span .
j. The columns of  are a basis for .
k. The rows of  are linearly independent.
l. The rows of  span .
m. The rows of  are a basis for .
n.
o.  is not an eigenvalue of 

Eigenvalues of powers and inverses

Suppose  is an eigenvector of  with eigenvalue . What can we say

about  or ? If  is invertible, how about the eigenvalues/vectors of

? On board.

We've shown:

Theorem 4.18: If  is an eigenvector of  with eigenvalue , then  is an

eigenvector of  with eigenvalue . This holds for each integer ,
and also for  if  is invertible.

In contrast to some other recent results, this one is very useful
computationally:

Example 4.21: Compute .

Solution: By finding the eigenspaces of the matrix, we can show that

A n × n
A

A =x⃗ b ⃗ ∈b ⃗ Rn

A =x⃗ 0⃗ 
A In

rank(A) = n
nullity(A) = 0

A
A Rn

A Rn

A
A Rn

A Rn

det A ≠ 0
0 A

x⃗ A λ

A2 A3 A

A−1

x⃗ A λ x⃗ 
Ak λk k ≥ 0

k < 0 A

[ ][ ]0
2

1
1

10 5
1
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Write , ,  and . Since

 we have

Much faster than repeated matrix multiplication, especially if  is
replaced with .

This raises an interesting question. In the example, the eigenvectors were a

basis for , so we could use this method to compute  for any .
However, last class we saw a  matrix with two one-dimensional

eigenspaces, so the eigenvectors didn't span . We will study this further
in Section 4.4, but right now we can answer a related question about linear
independence.

Theorem: If  are eigenvectors of  corresponding to distinct
eigenvalues , then  are linearly independent.

Proof in case : If  and  are linearly dependent, then 
for some . Therefore

so

Since , this forces , a contradiction.

The general case is very similar; see text.

Next: how to become a Billionaire using the material from this course.

[ ] [ ] = − [ ] and [ ] [ ] = 2 [ ]0
2

1
1

1
−1

1
−1

0
2

1
1

1
2

1
2

A = [ ]0
2

1
1

= [ ]x⃗ 
5
1

= [ ]v ⃗ 1
1

−1
= [ ]v ⃗ 2

1
2

= 3 + 2x⃗ v ⃗ 1 v ⃗ 2

A10x⃗ = (3 + 2 ) = 3 + 2A10 v ⃗ 1 v ⃗ 2 A10v ⃗ 1 A10v ⃗ 2

= 3(−1 + 2( ) = [ ])10
v ⃗ 1 210 v ⃗ 2

3 + 211

−3 + 212

10
100

R2 Akx⃗ x⃗ 
3 × 3

R3

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ m A
, , … ,λ1 λ2 λm , , … ,v ⃗ 1 v ⃗ 2 v ⃗ m

m = 2 v ⃗ 1 v ⃗ 2 = cv ⃗ 1 v ⃗ 2
c

A = A c = cAv ⃗ 1 v ⃗ 2 v ⃗ 2

= c =λ1v ⃗ 1 λ2v ⃗ 2 λ2v ⃗ 1

≠v ⃗ 1 0⃗ =λ1 λ2 □
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