Math 1600 Lecture 27, Section 2, 10 Nov 2014

Announcements:

Today we continue with 4.3. Read 4.3 and Appendix C for next class. Work
through recommended homework questions.

Tutorials: Quiz 7 covers 4.2, the parts of Appendix D that we covered, and
the part of 4.3 we finish today. No complex eigenvalues/roots.

Office hour: Monday, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Question: If P is invertible, how do det A and det(P ' AP) compare?
They are equal:

det(P 1 AP) = det(P ') det(A) det(P)

1
— 3ot (D) det(A) det(P) = det A.

Partial review of last class: Section 4.3

Definition: If Aisn x n, det(A — AI) will be a degree n polynomial in .
It is called the characteristic polynomial of A, and det(A — AI) =0is
called the characteristic equation.

By the fundamental theorem of invertible matrices, the solutions to the
characteristic equation are exactly the eigenvalues.

Finding eigenvalues and eigenspaces: Let A be an n X 1 matrix.

1. Compute the characteristic polynomial det(A — AI).

2. Find the eigenvalues of A by solving the characteristic equation
det(A — AI) = 0.

3. For each eigenvalue A, find a basis for the eigenspace
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E)\ = null(A — \I) by solving the system (A — AI)Z = 0.

So we need to get good at solving polynomial equations. Solutions are
called zeros or roots.

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of
degree n has at most n distinct roots.

Therefore:
Theorem: An n X n matrix A has at most n distinct eigenvalues.
Also:

Theorem D.2 (The Factor Theorem): Let f be a polynomial and let a be
a constant. Then a is a zero of f(z) (i.e. f(a) =0)ifandonlyifx — ais a
factor of f(x) (i.e. f(z) = (z — a)g(x) for some polynomial g).

New material: 4.3 continued

A root a of a polynomial f implies that f(x) = (z — a)g(x). Sometimes, a
is also a root of g(z), as we found above. Then f(z) = (z — a)’h(z). The

largest k such that (z — a)k is a factor of f is called the multiplicity of the
root a in f.

In the case of an eigenvalue, we call its multiplicity in the characteristic
polynomial the algebraic multiplicity of this eigenvalue.

We also define the geometric multiplicity of an eigenvalue A to be the
dimension of the corresponding eigenspace.

Example 4.19: Find the eigenvalues and eigenspaces of

-1 0 1
A= 3 0 —3/|.Do partially, on board.
1 0 -1

In this case, we find that A = 0 has algebraic multiplicity 2 and geometric
multiplicity 2.



These multiplicities will be important in Section 4.4.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its
main diagonal (repeated according to their algebraic multiplicity).

1 00
Example:If A= (2 3 0], then
4 5 1
1—A 0 0
det(A—X)=| 2 3-Xx 0 [=010-X*@B-N),
4 5 1—A

so the eigenvalues are A = 1 (with algebraic multiplicity 2) and A = 3 (with
algebraic multiplicity 1).

Question: What are the eigenvalues of a diagonal matrix?

The eigenvalues are the diagonal entries.

0 4
Question: What are the eigenvalues of [ O] ?

The characteristic polynomial is

—A 4
=X —4=A=-2)(A+2),
AN (A2 +2)

so the eigenvalues are 2 and -2. Trick question.

Question: How can we tell whether a matrix A is invertible using
eigenvalues?

A is invertible if and only if 0 is not an eigenvalue, because 0 being an
eigenvalue is equivalent to null(A) being non-trivial, which is equivalent to
A not being invertible, by the fundamental theorem.

So we can extend the fundamental theorem with two new entries:
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Theorem 4.17: Let A be an n X n matrix. The following are equivalent:

a. A is invertible.

b. AZ = b has a unique solution for every b € R".
c. AZ = 6 has only the trivial (zero) solution.
d. The reduced row echelon form of A is I,,.
f.rank(A4) =n

g. nullity(A) =0

h. The columns of A are linearly independent.
i. The columns of A span R".

j. The columns of A are a basis for R".

k. The rows of A are linearly independent.

l. The rows of A span R".

m. The rows of A are a basis for R".

n.det A # 0

0. 0 is not an eigenvalue of A
Eigenvalues of powers and inverses

Suppose Z is an eigenvector of A with eigenvalue \. What can we say
about A% or A®7 If A is invertible, how about the eigenvalues/vectors of
A~12 on board.

We've shown:

Theorem 4.18: If Z is an eigenvector of A with eigenvalue A, then Z is an

eigenvector of A* with eigenvalue M. This holds for each integer k > 0,
and also for k < 0 if A is invertible.

In contrast to some other recent results, this one is very useful
computationally:

o 115
Example 4.21: Compute :
2 1 1

Solution: By finding the eigenspaces of the matrix, we can show that

4 of 5



50f5

E L B B PR A R

. 0 1| _ 5| 1 , 1]

Write A = , T = , U1 = and Uy = . Since
2 1 1] —1 2 |

T = 3v1 + 20U, we have

Az = A (30, + 20,) = 348, + 24'%,
3 i 211

=3(-1)"5; +2(2'%)3, =
(=1)"9 (27)7, _3 4 212

Much faster than repeated matrix multiplication, especially if 10 is
replaced with 100.

This raises an interesting question. In the example, the eigenvectors were a

basis for R?, so we could use this method to compute A*Z for any T.
However, last class we saw a 3 X 3 matrix with two one-dimensional
eigenspaces, so the eigenvectors didn't span R3. We will study this further
in Section 4.4, but right now we can answer a related question about linear
independence.

Theorem: If U1, ¥s, ..., U,, are eigenvectors of A corresponding to distinct
eigenvalues A1, Ag, ..., Ay, then U1, Vs, ..., T, are linearly independent.

Proof in case m = 2: If ¥; and Uy are linearly dependent, then U7 = ¢y
for some c. Therefore

A’l_)’l = AC’I?Q = CA172
o)

)\1’(71 = C)\2'l_j2 = )\2’(_51
Since U1 # 0, this forces A1 = Ao, a contradiction. [
The general case is very similar; see text.

Next: how to become a Billionaire using the material from this course.



