
Math 1600 Lecture 29, Section 2, 14 Nov 2014

Announcements:

Today we finish 4.3 and start 4.4. Continue reading Section 4.4 for next
class. Work through recommended homework questions.

Final exam: Monday, December 8, 9am to noon. See the course home
page for final exam conflict policy. You should immediately notify the
registrar or your Dean's office (and your instructor) of any conflicts!
(Deadline Nov 21.)

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Question: Can you find a nonzero complex number  such that ?

True/False: If  and  are complex numbers in the first quadrant, then so is
.

Partial review of Appendix C

A complex number is a number of the form , where  and  are real

numbers and  is a symbol such that .

Addition: , like vector addition.

Multiplication: .

The conjugate of  is . Reflection in real axis. We
learned the properties of conjugation.

The absolute value or modulus of  is

Since , we have that

z = 0z2

z w
zw

a + bi a b
i = −1i2

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

z = a + bi = a − biz̄

z = a + bi

|z| = |a + bi| = , the distance from the origin.+a2 b2
− −−−−−√

z = |zz̄ |2
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This can be used to divide complex numbers:

We learned the properties of absolute value. One of them was
.

A complex number  can also be expressed in polar coordinates
, where  and  is such that

Then

Let

Then

So

(up to multiples of ).

In particular, if , then . It
follows that the two square roots of  are

= 1 so = (for z ≠ 0)
zz̄

|z|2
1
z

z̄

|z|2

= = .
w

z

w

z

z̄

z̄

wz̄

|z|2

|wz| = |w||z|

z = a + bi
(r, θ) r = |z| ≥ 0 θ

a = r cos θ and b = r sin θ

z = r cos θ + (r sin θ)i = r(cos θ + i sin θ)

= (cos + i sin ) and = (cos + i sin ).z1 r1 θ1 θ1 z2 r2 θ2 θ2

z1z2 = (cos + i sin )(cos + i sin )r1r2 θ1 θ1 θ2 θ2

= [(cos cos − sin sin ) + i(sin cos + cos sin )]r1r2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

= [cos( + ) + i sin( + )]r1r2 θ1 θ2 θ1 θ2

| | = | || | and Arg( ) = Arg + Argz1z2 z1 z2 z1z2 z1 z2

2π

z = r(cos θ + i sin θ) = (cos(2θ) + i sin(2θ))z2 r2

z

± (cos(θ/2) + i(sin θ/2))r√
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Partial review of Section 4.3

The eigenvalues of a square matrix  can be computed as the roots (also
called zeros) of the characteristic polynomial

If  is a root of a polynomial , then . Sometimes, 

is also a root of . Then . The largest  such that

 is a factor of  is called the multiplicity of the root  in .

In the case of an eigenvalue, we call its multiplicity in the characteristic
polynomial the algebraic multiplicity of this eigenvalue.

Example: Let . Since ,  is a

root of . And since ,  has multiplicity .

In the case of an eigenvalue, we call its multiplicity in the characteristic
polynomial the algebraic multiplicity of this eigenvalue.

Newish material

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of
degree  has at most  distinct roots. In fact, the sum of the multiplicities is
at most .

Therefore:

Theorem: An  matrix  has at most  distinct eigenvalues. In fact,
the sum of the algebraic multiplicities is at most .

Complex eigenvalues and eigenvectors

This material isn't covered in detail in the text.

Example 4.7: Find the eigenvalues of  (a) over  and (b)

over .

A

det(A − λI)

a f(x) f(x) = (x − a)g(x) a

g(x) f(x) = (x − a h(x))2
k

(x − a)k
f a f

f(x) = − 2x + 1x2 f(1) = 1 − 2 + 1 = 0 1
f f(x) = (x − 1)2 1 2

n n
n

n × n A n
n

A = [ ]0
1

−1
0

R
C
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Solution: We must solve

(a) Over , there are no solutions, so  has no real eigenvalues. This is why
the Theorem above says "at most ". (This matrix represents rotation by 90
degrees, and we also saw geometrically that it has no real eigenvectors.)

(b) Over , the solutions are  and . For example, the

eigenvectors for  are the nonzero complex multiples of , since

In fact, , so each of these eigenvalues has
algebraic multiplicity 1. So in this case the sum of the algebraic
multiplicities is exactly 2.

The Fundamental Theorem of Algebra can be extended to say:

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of
degree  has at most  distinct complex roots. In fact, the sum of their
multiplicities is exactly .

Another way to put it is that over the complex numbers, every polynomial
factors into linear factors.

Real matrices

Notice that  and  are complex conjugates of each other.

If the matrix  has only real entries, then the characteristic polynomial has
real coefficients. Say it is

with all of the 's real numbers. If  is an eigenvalue, then so is its complex

0 = det(A − λI) = det [ ] = + 1.
−λ

1
−1
−λ

λ2

R A
n

C λ = i λ = −i

λ = i [ ]i

1

[ ] [ ] = [ ] = i [ ] .
0
1

−1
0

i

1
−1

i

i

1

+ 1 = (λ − i)(λ + i)λ2

n n
n

i −i

A

det(A − λI) = + + ⋯ + λ + ,anλn an−1λn−1 a1 a0

ai z
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conjugate , because

Theorem: The complex eigenvalues of a real matrix come in conjugate
pairs.

Complex matrices

A complex matrix might have real or complex eigenvalues, and the complex
eigenvalues do not have to come in conjugate pairs.

Examples: , .

General case

In general, don't forget that the quadratic formula

gives the roots of , and these can be real (if ) or

complex (if ). This formula also works if ,  and  are
complex.

Also don't forget to try small integers first.

Example: Find the real and complex eigenvalues of .

Solution:

z̄

+ + ⋯ + +an z̄n an−1 z̄ n−1 a1 z̄ a0

= = = 0.+ + ⋯ + z +anzn an−1zn−1 a1 a0
¯ ¯¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯ 0̄

[ ]1
0

2
i

[ ]1
0

i

2

x =
−b ± − 4acb2− −−−−−−√

2a

a + bx + cx2 − 4ac ⩾ 0b2

− 4ac < 0b2 a b c

A =
⎡
⎣⎢

2
1
0

3
2

−2

0
2
1

⎤
⎦⎥
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By trial and error,  is a root. So we factor:

We don't find any obvious roots for the quadratic factor, so we use the
quadratic formula:

So the eigenvalues are ,  and . The algebraic
multiplicities are all , and .

Note: Our questions always involve real eigenvalues and real eigenvectors
unless we say otherwise. But there will be problems where we ask for
complex eigenvalues.

Section 4.4: Similarity and Diagonalization

We're going to introduce a new concept that will turn out to be closely
related to eigenvalues and eigenvectors.

Definition: Let  and  be  matrices. We say that  is similar to 

if there is an invertible matrix  such that . When this is the
case, we write .

It is equivalent to say that  or .

∣

∣

∣
∣

2 − λ

1
0

3
2 − λ

−2

0
2

1 − λ

∣

∣

∣
∣ = (2 − λ) − 3

∣
∣
∣
2 − λ

−2
2

1 − λ

∣
∣
∣

∣
∣
∣
1
0

2
1 − λ

∣
∣
∣

= (2 − λ)( − 3λ + 6) − 3(1 − λ)λ2

= − + 5 − 9λ + 9.λ3 λ2

λ = 3

− + 5 − 9λ + 9 = (λ − 3)(− + 2λ − 3)λ3 λ2 λ2

λ = =
−2 ± − 4(−1)(−3)22

− −−−−−−−−−−−−√
−2

−2 ± −8−−−√
−2

= = 1 ± i.
−2 ± 2 i2√

−2
2√

3 1 + i2√ 1 − i2√
1 1 + 1 + 1 = 3

A B n × n A B

P AP = BP −1

A ∼ B

AP = PB A = PBP −1
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Example 4.22: Let  and . Then ,

since

We also need to check that the matrix  is invertible, which

is the case since its determinant is .

It is tricky in general to find such a  when it exists. We'll learn a method
that works in a certain situation in this section.

A = [ ]1
0

2
−1

B = [ ]1
−2

0
−1

A ∼ B

[ ] [ ] = [ ] [ ] .
1
0

2
−1

1
1

−1
1

1
1

−1
1

1
−2

0
−1

P = [ ]1
1

−1
1

2

P
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