Math 1600 Lecture 29, Section 2, 14 Nov 2014

Announcements:

Today we finish 4.3 and start 4.4. Continue **reading** Section 4.4 for next class. Work through recommended homework questions.

Final exam: Monday, December 8, 9am to noon. See the course home page for final exam **conflict** policy. You should **immediately** notify the registrar or your Dean's office (and your instructor) of any conflicts! (Deadline Nov 21.)

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Question: Can you find a nonzero complex number z such that $z^2 = 0$?

True/False: If z and w are complex numbers in the first quadrant, then so is . *zw*

Partial review of Appendix C

A $\mathop{\mathsf{complex}}$ $\mathop{\mathsf{number}}$ is a number of the form $a+bi$, where a and b are real numbers and i is a symbol such that $i^2=-1.$

 ${\bf Addition:}\ (a+bi)+(c+di)=(a+c)+(b+d)i$, like vector addition.

 ${\sf Multiplication:} \; (a+bi)(c+di) = (ac-bd) + (ad+bc)i.$

The $\boldsymbol{conjugate}$ of $z = a + bi$ is $\bar{z} = a - bi$. Reflection in real axis. We learned the properties of conjugation.

The $\bf{absolute\ value\ or\ modulus\ of\ } z = a + bi\ is$

 $|z| = |a + bi| = \sqrt{a^2 + b^2}$, the distance from the origin.

Since $z{\bar z}=\left|z\right|^2$, we have that

$$
\frac{z\bar{z}}{\left|z\right|^{2}}=1\quad\text{so}\quad \frac{1}{z}=\frac{\bar{z}}{\left|z\right|^{2}}\quad \ (\text{for}\;z\neq0)
$$

This can be used to divide complex numbers:

$$
\frac{w}{z}=\frac{w}{z}\,\frac{\bar z}{\bar z}=\frac{w\bar z}{|z|^2}\,.
$$

We learned the properties of absolute value. One of them was $|wz|=|w||z|.$

A complex number $z = a + bi$ can also be expressed in **polar coordinates** (r, θ) , where $r = |z| \geq 0$ and θ is such that

 $a = r \cos \theta$ and $b = r \sin \theta$

Then

$$
z=r\cos\theta+(r\sin\theta)i=r(\cos\theta+i\sin\theta)
$$

Let

$$
z_1=r_1(\cos\theta_1+i\sin\theta_1)\quad\text{and}\quad z_2=r_2(\cos\theta_2+i\sin\theta_2).
$$

Then

$$
\begin{aligned} z_1 z_2 &= r_1 r_2 (\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2) \\ &= r_1 r_2 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)] \\ &= r_1 r_2 [\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2)] \end{aligned}
$$

So

$$
|z_1z_2|=|z_1||z_2| \quad \text{and} \quad \operatorname{Arg}(z_1z_2)=\operatorname{Arg} z_1+\operatorname{Arg} z_2
$$

(up to multiples of 2π).

In particular, if $z = r(\cos\theta + i\sin\theta)$, then $z^2 = r^2(\cos(2\theta) + i\sin(2\theta))$. It follows that the two **square roots** of z are

 $\pm \sqrt{r}(\cos(\theta/2) + i(\sin \theta/2))$

Partial review of Section 4.3

The eigenvalues of a square matrix A can be computed as the roots (also called **zeros**) of the **characteristic polynomial**

$$
\det(A-\lambda I)
$$

If a is a root of a polynomial $f(x)$, then $f(x) = (x-a)g(x)$. Sometimes, is also a root of $g(x)$. Then $f(x) = (x-a)^2 h(x)$. The largest k such that $(x - a)^k$ is a factor of f is called the **multiplicity** of the root a in f . a is a root of a polynomial $f(x)$, then $f(x) = (x-a)g(x)$. Sometimes, a $g(x)$. Then $f(x) = (x-a)^2 h(x)$. The largest k

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

Example: Let $f(x) = x^2 - 2x + 1$. Since $f(1) = 1 - 2 + 1 = 0$, 1 is a root of f . And since $f(x) = (x-1)^2$, 1 has multiplicity 2 .

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

Newish material

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree n has at most n distinct roots. In fact, the sum of the multiplicities is at most n .

Therefore:

 $\bf Theorem:$ An $n\times n$ matrix A has at most n distinct eigenvalues. In fact, the sum of the algebraic multiplicities is at most $n.$

Complex eigenvalues and eigenvectors

This material isn't covered in detail in the text.

Example 4.7: Find the eigenvalues of
$$
A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
$$
 (a) over R and (b) over C.

$$
0=\det(A-\lambda I)=\det\begin{bmatrix}-\lambda & -1\\ 1 & -\lambda\end{bmatrix}=\lambda^2+1.
$$

(a) Over \R , there are no solutions, so A has no real eigenvalues. This is why the Theorem above says "at most n ". (This matrix represents rotation by 90 degrees, and we also saw geometrically that it has no real eigenvectors.)

(b) Over $\mathbb C$, the solutions are $\lambda = i$ and $\lambda = -i$. For example, the eigenvectors for $\lambda = i$ are the nonzero **complex** multiples of $\begin{bmatrix} i \ 1 \end{bmatrix}$, since 1

$$
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ i \end{bmatrix} = i \begin{bmatrix} i \\ 1 \end{bmatrix}.
$$

In fact, $\lambda^2+1=(\lambda-i)(\lambda+i)$, so each of these eigenvalues has algebraic multiplicity 1. So in this case the sum of the algebraic multiplicities is **exactly** 2.

The Fundamental Theorem of Algebra can be extended to say:

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree n has at most n distinct **complex** roots. In fact, the sum of their multiplicities is **exactly** n .

Another way to put it is that over the complex numbers, every polynomial factors into **linear** factors.

Real matrices

Notice that i and $-i$ are complex conjugates of each other.

If the matrix A has only real entries, then the characteristic polynomial has real coefficients. Say it is

$$
\det(A-\lambda I)=a_n\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0,
$$

with all of the a_i 's real numbers. If z is an eigenvalue, then so is its complex

conjugate \bar{z} , because

$$
a_n \bar{z}^n + a_{n-1} \bar{z}^{n-1} + \cdots + a_1 \bar{z} + a_0
$$

=
$$
\overline{a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0} = \bar{0} = 0.
$$

Theorem: The complex eigenvalues of a **real** matrix come in conjugate pairs.

Complex matrices

A complex matrix might have real or complex eigenvalues, and the complex eigenvalues do not have to come in conjugate pairs.

Examples: $\begin{bmatrix} 1 & 2 \ 0 & i \end{bmatrix}$, $\begin{bmatrix} 1 & i \ 0 & 2 \end{bmatrix}$. $\boldsymbol{0}$ $\begin{bmatrix} 2 \ i \end{bmatrix}$, $\begin{bmatrix} 1 & i \ 0 & 2 \end{bmatrix}$ *i* 2

General case

In general, don't forget that the quadratic formula

$$
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
$$

gives the roots of $ax^2 + bx + c$, and these can be real (if $b^2 - 4ac \geqslant 0$) or ϵ complex (if $b^2-4ac < 0$). This formula also works if a , b and c are complex.

Also don't forget to try small integers first.

Example: Find the real and complex eigenvalues of $A = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 2 \end{bmatrix}$. $\overline{}$ $\overline{}$ 2 1 0 3 2 -2 0 2 1 $\overline{}$ $\overline{}$ $\overline{}$

Solution:

$$
\begin{vmatrix} 2-\lambda & 3 & 0 \\ 1 & 2-\lambda & 2 \\ 0 & -2 & 1-\lambda \end{vmatrix} = (2-\lambda)\begin{vmatrix} 2-\lambda & 2 \\ -2 & 1-\lambda \end{vmatrix} - 3\begin{vmatrix} 1 & 2 \\ 0 & 1-\lambda \end{vmatrix}
$$

$$
= (2-\lambda)(\lambda^2 - 3\lambda + 6) - 3(1-\lambda)
$$

$$
= -\lambda^3 + 5\lambda^2 - 9\lambda + 9.
$$

By trial and error, $\lambda = 3$ is a root. So we factor:

$$
-\lambda^3 + 5\lambda^2 - 9\lambda + 9 = (\lambda - 3)(-\lambda^2 + 2\lambda - 3)
$$

We don't find any obvious roots for the quadratic factor, so we use the quadratic formula:

$$
\lambda = \frac{-2 \pm \sqrt{2^2 - 4(-1)(-3)}}{-2} = \frac{-2 \pm \sqrt{-8}}{-2} = \frac{-2 \pm 2\sqrt{2}i}{-2} = 1 \pm \sqrt{2}i.
$$

So the eigenvalues are 3 , $1+\sqrt{2}\,i$ and $1-\sqrt{2}\,i$. The algebraic multiplicities are all 1 , and $1 + 1 + 1 = 3$.

Note: Our questions always involve real eigenvalues and real eigenvectors unless we say otherwise. But there **will** be problems where we ask for complex eigenvalues.

Section 4.4: Similarity and Diagonalization

We're going to introduce a new concept that will turn out to be closely related to eigenvalues and eigenvectors.

Definition: Let A and B be $n \times n$ matrices. We say that A is $\boldsymbol{\mathsf{s}}$ imilar to B if there is an invertible matrix P such that $P^{-1}AP = B.$ When this is the case, we write $A \sim B.$

It is equivalent to say that $AP = PB$ or $A = PBP^{-1}$.

Example 4.22: Let
$$
A = \begin{bmatrix} 1 & 2 \ 0 & -1 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 1 & 0 \ -2 & -1 \end{bmatrix}$. Then $A \sim B$,

since

$$
\begin{bmatrix} 1 & 2 \ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \ -2 & -1 \end{bmatrix}.
$$

We also need to check that the matrix $P = \begin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix}$ is invertible, which is the case since its determinant is 2.

It is tricky in general to find such a P when it exists. We'll learn a method that works in a certain situation in this section.