
Math 1600 Lecture 30, Section 2, 17 Nov 2014

Announcements:

Today we continue with 4.4. Read Markov chains part of Section 4.6 for next
class. Not covering Section 4.5, or rest of 4.6 (which contains many
interesting applications!) Work through recommended homework questions.

Tutorials: Quiz 8 will cover Section 4.3, the part of Appendix C we covered,
and what we finish today in Section 4.4. There is also a quiz next week.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Office hour: Monday, 3:00-3:30, MC103B.

True/false: Every polynomial of degree  has exactly  distinct roots over
.

False. For example,  has only the root . A polynomial of degree 
has exactly  complex roots if you count them with multiplicity. Over , the
sum of the multiplicities is at most .

True/false: The complex eigenvalues of a matrix always come in conjugate
pairs.

False. This is true if the matrix has only real entries, but  has  as

an eigenvalue, but not .

True/false: If  is an eigenvalue of  and , then  is an eigenvalue

of .

True, since if , then .

Section 4.4

We're going to introduce a new concept that will turn out to be closely
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λ A k ⩾ 0 λk

Ak

A = λx⃗ x⃗ = λ = = ⋯ =Akx⃗ Ak−1 x⃗ λ2Ak−2x⃗ λkx⃗ 

1 of 9



related to eigenvalues and eigenvectors.

Definition: Let  and  be  matrices. We say that  is similar to 

if there is an invertible matrix  such that . When this is the
case, we write .

It is equivalent to say that  or .

Example 4.22: Let  and . Then ,

since

We also need to check that the matrix  is invertible, which

is the case since its determinant is .

It is tricky in general to find such a  when it exists. We'll learn a method
that works in a certain situation in this section.

Theorem 4.21: Let ,  and  be  matrices. Then:
a. .
b. If  then .
c. If  and , then .

Proof: (a) 

(b) Suppose . Then  for some invertible matrix . Then

. Let . Then , so .

(c) Exercise.

Similar matrices have a lot of properties in common.

Theorem 4.22: Let  and  be similar matrices. Then:
a. 
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b.  is invertible iff  is invertible.
c.  and  have the same rank.
d.  and  have the same characteristic polynomial.
e.  and  have the same eigenvalues.

Proof: Assume that  for some invertible matrix .

We discussed (a) in lecture 27:

(b) follows immediately.

(c) takes a bit of work and will not be covered.

(d) follows from (a): since  it
follows that  and  have the same determinant.

(e) follows from (d).

Question: Are  and  similar?

Question: Are  and  similar?

True/false: The identity matrix is similar to every matrix.

False. Since  for any invertible , the identity matrix is only
similar to itself.

True/False: If  and  have the same eigenvalues, then  and  are
similar.

False. For example,  and  have the same eigenvalues, but aren't

A B
A B
A B
A B

AP = BP −1 P

det(B) = det( AP) = det( ) det(A) det(P)P −1 P −1

= det(A) det(P) = det A.
1

det(P)

B − λI = AP − λI = (A − λI)PP −1 P −1

B − λI A − λI

□
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similar.

See also Example 4.23(b) in text.

Diagonalization

Definition:  is diagonalizable if it is similar to some diagonal matrix.

Example 4.24:  is diagonalizable. Take .

Then

If  is similar to a diagonal matrix , then  must have the eigenvalues of
 on the diagonal. (Why?) But how to find ?

On board: notice that the columns of  are eigenvectors for !

Theorem 4.23: Let  be an  matrix. If  is an  matrix whose

columns are linearly independent eigenvectors of , then  is a
diagonal matrix  with the corresponding eigenvalues of  on the diagonal.

On the other hand, if  is any invertible matrix such that  is
diagonal, then the columns of  are linearly independent eigenvectors of .

It follows that  is diagonalizable if and only if it has  linearly independent
eigenvectors.

This theorem is one of the main reasons we want to be able to find
eigenvectors of a matrix. Moreover, the more eigenvectors the better, so
this motivates allowing complex eigenvectors.

Proof: Suppose  are  linearly independent eigenvectors of
, and let . Write  for the th eigenvalue, so

 for each , and let  be the diagonal matrix with the 's on
the diagonal. Then

A
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Also,

so , as required. (Why is  invertible?)

On the other hand, if  and  is diagonal, then ,
and it follows from an argument like the one above that the columns of 
are eigenvectors of , and the eigenvalues are the diagonal entries of

.

So we'd like to be able to find enough linearly independent eigenvectors of
a matrix. Recall that in Section 4.3, we saw:

Theorem 4.20: If  are eigenvectors of  corresponding to
distinct eigenvalues , then  are linearly
independent.

Example: Is the matrix diagonalizable?

Yes. The eigenvalues are ,  and , and for each one there is at least one
eigenvector. These are linearly independent (by Theorem 4.20), and there
are three of them, so  is diagonalizable (by Theorem 4.23).

To find the matrix  explicitly, we need to solve the three systems to find
the eigenvectors.

Theorem 4.25: If  is an  matrix with  distinct eigenvalues, then 

AP = A[ ⋯ ] = [ ⋯ ]p ⃗ 1 p ⃗ 2 p ⃗ n λ1p ⃗ 1 λ2p ⃗ 2 λnp ⃗ n

PD = [ ⋯ ]p ⃗ 1 p ⃗ 2 p ⃗ n

⎡
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P

A
D □
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is diagonalizable.

Example 4.25: Is  diagonalizable? If so, find a matrix

 that diagonalizes it.

Solution: In Example 4.18 we found that the eigenvalues are  (with
algebraic multiplicity 2) and  (with algebraic multiplicity 1). A basis for

 is  and a basis for  is . Since every eigenvector is a scalar

multiple of one of these, it is not possible to find three linearly independent
eigenvectors. So  is not diagonalizable.

Example 4.26: Is  diagonalizable? If so, find a

matrix  that diagonalizes it.

Solution: In Example 4.19 (done mostly on board, but also in text) we
found that the eigenvalues are  (with algebraic multiplicity 2) and

 (with algebraic multiplicity 1). A basis for  is  and

. A basis for  is . These are linearly

independent (see below). Thus

is invertible, and by the theorem, we must have
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(Note that to check an answer like this, it is usually easiest to check that
. Do so!)

Note: Different orders of eigenvectors/values work too.

Theorem 4.24: If  are distinct eigenvalues of  and, for each ,
 is a basis for the eigenspace , then the union of the 's is a linearly

independent set.

The proof of this is similar to the proof of Theorem 4.20, where we had only
one non-zero vector in each eigenspace.

Combining Theorems 4.23 and 4.24 gives the following important
consequence:

Theorem: An  matrix is diagonalizable if and only if the sum of the
geometric multiplicities of the eigenvalues is .

Look at Examples 4.25 and 4.26 again.

So it is important to understand the geometric multiplicities better. Here is a
helpful result:

Lemma 4.26: If  is an eigenvalue of an  matrix , then

We'll prove this in a minute. First, let's look at what it implies:

Let  be an  matrix with distinct eigenvalues . Let their
geometric multiplicities be  and their algebraic multiplicities
be . We know

and so

AP = = DP −1
⎡
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So the only way to have  is to have  for each 
and .

This gives the main theorem of the section:

Theorem 4.27 (The Diagonalization Theorem): Let  be an 
matrix with distinct eigenvalues . Let their geometric
multiplicities be  and their algebraic multiplicities be

. Then the following are equivalent:
a.  is diagonalizable.
b. .
c.  for each and .

Note: This is stated incorrectly in the text. The red part must be added
unless you are working over , in which case it is automatic that

. With the way I have stated it, it is correct over  or
over .

Example: Is diagonalizable?

It depends. If we are working over , there are no eigenvalues and no
eigenvectors, so no, it is not diagonalizable, and (a), (b) and (c) all fail.

If we are working over , then  and  are eigenvalues, and are distinct,
so  is diagonalizable, and (b) and (c) hold too. Note that in this case,  will
be complex: To find , we first find that corresponding eigenvectors are

 and . So if we take

we find that

+ ⋯ + ⩽ + ⋯ + ⩽ ng1 gk a1 ak

+ ⋯ + = ng1 gk =gi ai i
+ ⋯ + = na1 ak
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Summary of diagonalization: Given an  matrix , we would like to
determine whether  is diagonalizable, and if it is, find the invertible matrix

 and the diagonal matrix  such that . The result may
depend upon whether you are working over  or .

Steps:

1. Compute the characteristic polynomial  of .
2. Find the roots of the characteristic polynomial and their algebraic
multiplicities by factoring.
3. If the algebraic multiplicities don't add up to , then  is not
diagonalizable, and you can stop. (If you are working over , this can't
happen.)
4. For each eigenvalue , compute the dimension of the eigenspace .
This is the geometric multiplicity of , and if it is less than the algebraic
multiplicity, then  is not diagonalizable, and you can stop.
5. Compute a basis for the eigenspace .
6. If for each eigenvalue the geometric multiplicity equals the algebraic
multiplicity, then you take the  eigenvectors you found and put them in
the columns of a matrix . Put the eigenvalues in the same order on the
diagonal of a matrix .
7. Check that .

Note that step 4 only requires you to find the row echelon form of ,
as the number of free variables here is the geometric multiplicity. In step 5,
you solve the system.

AP = [ ] = DP −1 i
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