
Math 1600 Lecture 31, Section 2, 19 Nov 2014

Announcements:

Today we finish 4.4 and cover the Markov chains part of Section 4.6. Not covering
Section 4.5, or rest of 4.6 (which contains many interesting applications!) Read
Section 5.1 for next class.

Tutorials: Quiz 8 will cover Section 4.3, the part of Appendix C we covered, and
what we finish today in Section 4.4. There is also a quiz next week.

Office hour: Prof. Christensen's office hour for Wednesday is cancelled.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Questions to discuss with your neighbour: What does it mean for  and  to
be similar? What properties do similar matrices have in common? What does it
mean for  to be diagonalizable? How do we tell if it is, and how do we
diagonalize ?

Review of Section 4.4:

Definition: Let  and  be  matrices. We say that  is similar to 

( ) if there is an invertible matrix  such that .

Theorem 4.22: Let  and  be similar matrices. Then  and  have the same
determinant, rank, characteristic polynomial and eigenvalues.

Definition:  is diagonalizable if it is similar to some diagonal matrix.

If  is similar to a diagonal matrix , then  must have the eigenvalues of  on
the diagonal. But how to find ?

Theorem 4.23: Let  be an  matrix. If  is an  matrix whose

columns are linearly independent eigenvectors of , then  is a diagonal
matrix  with the corresponding eigenvalues of  on the diagonal.

On the other hand, if  is any invertible matrix such that  is diagonal,
then the columns of  are linearly independent eigenvectors of .
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It follows that  is diagonalizable if and only if it has  linearly independent
eigenvectors.

This theorem is one of the main reasons we want to be able to find eigenvectors of
a matrix. Moreover, the more eigenvectors the better, so this motivates allowing
complex eigenvectors.

Theorem 4.24: If  are distinct eigenvalues of  and, for each ,  is a
basis for the eigenspace , then the union of the 's is a linearly independent
set.

Combining Theorems 4.23 and 4.24 gives the following important consequence:

Theorem: An  matrix is diagonalizable if and only if the sum of the
geometric multiplicities of the eigenvalues is .

In particular:

Theorem 4.25: If  in an  matrix with  distinct eigenvalues, then  is
diagonalizable.

So it is important to understand the geometric multiplicities better. Here is a
helpful result:

Lemma 4.26: If  is an eigenvalue of an  matrix , then

It follows that the only way for the geometric multiplicities to add to  is if they
are equal to the algebraic multiplicities and the algebraic multiplicities add to :

Theorem 4.27 (The Diagonalization Theorem): Let  be an  matrix
with distinct eigenvalues . Let their geometric multiplicities be

 and their algebraic multiplicities be . Then the
following are equivalent:
a.  is diagonalizable.
b. .
c.  for each and .

Note: This is stated incorrectly in the text. The red part must be added unless you
are working over , in which case it is automatic that . With
the way I have stated it, it is correct over  or over .
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Summary of diagonalization: Given an  matrix , we would like to
determine whether  is diagonalizable, and if it is, find the invertible matrix 

and the diagonal matrix  such that . The result may depend upon
whether you are working over  or .

Steps:

1. Compute the characteristic polynomial  of .
2. Find the roots of the characteristic polynomial and their algebraic multiplicities
by factoring.
3. If the algebraic multiplicities don't add up to , then  is not diagonalizable,
and you can stop. (If you are working over , this can't happen.)
4. For each eigenvalue , compute the dimension of the eigenspace . This is
the geometric multiplicity of , and if it is less than the algebraic multiplicity, then

 is not diagonalizable, and you can stop.
5. Compute a basis for the eigenspace .
6. If for each eigenvalue the geometric multiplicity equals the algebraic
multiplicity, then you take the  eigenvectors you found and put them in the
columns of a matrix . Put the eigenvalues in the same order on the diagonal of a
matrix .
7. Check that .

Note that step 4 only requires you to find the row echelon form of , as the
number of free variables here is the geometric multiplicity. In step 5, you solve the
system.

New material:

I still owe you a proof of:

Lemma 4.26: If  is an eigenvalue of an  matrix , then
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Proof (more direct than in text): Suppose that  is an eigenvalue of  with
geometric multiplicity , and let  be a basis for , so

Let  be an invertible matrix whose first  columns are :

Since , we know that  for . Also, the first 

columns of  are . So the first  columns of  are

. Therefore the matrix  has  as an eigenvalue with

algebraic multiplicity at least . But  has the same characteristic
polynomial as , so  must also have algebraic multiplicity at least  for . .

Powers:

Suppose , where  is diagonal. Then . We can use
this to compute powers of . For example,

and  is easy to compute since  is diagonal: you just raise the diagonal entries
to the fifth power.

More generally, . This is clearly an efficient way to compute
powers! Note that we need to know , not just , to do this. Also note that even
if  is real, it would work to diagonalize  over . The answer would be real, but
the intermediate calculations would be complex.

Example: Let . In Example 4.24 we found that ,

where  and . Therefore
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See also Example 4.29. We'll find this result useful for Markov Chains.

Review of Markov chains:

A Markov chain has a finite set of states  and there is an  matrix
 (called the transition matrix) with the property that the  entry  is the

probability that you transition from state  to state  in one time step.

Since you must transition to some state, . That is, the entries
in each column sum to 1. Moreover, each entry . Such a  is called a
stochastic matrix.

We can represent the current state of the system with a state vector .
The th entry of  may denote the number of people/objects in state . Or we may
divide by the total number, so the th entry of  gives the fraction of
people/objects in state . In this case,  has non-negative entries that sum to 1
and is called a probability vector.

If  denotes the state after  time steps, then the state after one more time step
is given by

It follows that . Therefore:

The  entry  of  is the probability of going from state  to state  in 

steps.

A state  such that  is called a steady state vector. This is the same as
an eigenvector with eigenvalue 1. In Lecture 22, we proved:

Theorem 4.30: Every stochastic matrix has a steady state vector, i.e. it has
 as an eigenvalue.

We proved this using the fact that  and  have the same eigenvalues, and
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then noticing that the vector with all 's is an eigenvector of  with eigenvalue
1.

Example: We studied toothpaste usage, and had transition matrix

We noticed experimentally that a given starting state tends to the state 

and that

We then found this steady state vector algebraically by solving . [It

is equivalent to solve .]

With our new tools, we can go further now.

Section 4.6: Markov chains:

Let's compute powers of the matrix  above. One can show that  has
characteristic polynomial

and so has eigenvalues  and . The eigenspaces are

So if we write , we have that .

Therefore,
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It follows that if we start with any state  with , we'll find that

This explains why every state tends to the steady state! (It also gives a fast way to
compute  for large .)

This is a very general phenomenon, which we'll spend the rest of the lecture
understanding.

Theorem 4.31: Let  be an  stochastic matrix. Then every eigenvalue 
has .

If in addition the entries of  are all positive, then all eigenvalues besides 
have .

The general proof just involves some inequalities, but the notation is confusing.
Let's see how the argument goes in the special case of

The key idea is to study the eigenvalues of , which are the same as those of .

Suppose  is an eigenvector of  with . Then 

which means that

The second component gives

and so . If we allow  and  to be negative or complex, we need to use
absolute values, and we can conclude that .
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The other part of the Theorem is similar.

The next theorem helps us understand the long-term behaviour:

Theorem 4.33: Let  be an  stochastic matrix all of whose entries are

positive. Then as , , a matrix all of whose columns are equal to
the same vector  which is a steady state probability vector for .
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