
Math 1600 Lecture 32, Section 2, 21 Nov 2014

Announcements:

Today we finish 4.6 and start Section 5.1. Continue reading Section 5.1 for
next class, and start reading Section 5.2. Work through recommended
homework questions.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Review: Section 4.6: Markov chains:

Theorem 4.30: Every stochastic matrix has a steady state vector, i.e. it
has  as an eigenvalue.

Theorem 4.31: Let  be an  stochastic matrix. Then every
eigenvalue  has .

If in addition the entries of  are all positive, then all eigenvalues besides
 have .

Theorem 4.33: Let  be an  stochastic matrix all of whose entries

are positive. Then as , , a matrix all of whose columns are
equal to the same vector  which is a steady state probability vector for .

New material:

Proof of 4.33: We'll assume  is diagonalizable: . So

. As ,  approaches a matrix  with 's and 's

on the diagonal (by Theorem 4.31), which means that  approaches

.

λ = 1

P n × n
λ |λ| ⩽ 1

P
λ = 1 |λ| < 1

P n × n

k → ∞ → LP k

x⃗ P

P PQ = DQ−1

= QP k DkQ−1 k → ∞ Dk D∗ 1 0
P k

L = QD∗Q−1
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Now that we know that  has some limit , we can deduce something

about it. Since , we have

This means that the columns of  must be steady-state vectors for . Since

the columns of  are probability vectors, the same must be true of the
columns of . It's not hard to show that  has a unique steady-state
probability vector , so , as required.

Finally, we can deduce that Markov chains tend to their steady states:

Theorem 4.34: Let  be an  stochastic matrix all of whose entries
are positive, and let  be any initial probability vector. Then as ,

, where  is the steady state probability vector for .

Proof: Suppose that  has components . Then

This result works both ways: if you compute the eigenvector with
eigenvalue 1, that tells you the steady-state vector that other states go to
as . But it also means that if you don't know the steady-state vector,

you can approximate it by starting with any vector  and computing 
for large !

The latter is what Google does to compute the page rank eigenvector.

Note: A transition matrix  is regular if some power  of it has positive
entries. This means that there is a nonzero probably to get from any starting
state to any ending state after some number of steps. The text proves the
above results for regular matrices, which is not hard once you know them
for matrices with positive entries.

P k L

= Llimk→∞ P k

PL = P = = Llim
k→∞

P k lim
k→∞

P k+1

L P

P k

L P
x⃗ L = [ ⋯ ]x⃗ x⃗ x⃗ □

P n × n
x⃗ 0 k → ∞

→x⃗ k x⃗ x⃗ P

x⃗ 0 , , … ,x1 x2 xn

lim
k→∞

x⃗ k= = Llim
k→∞

P kx⃗ 0 x⃗ 0

= [ ⋯ ]x⃗ x⃗ x⃗ x⃗ 0
= + + ⋯ +x1x⃗ x2x⃗ xnx⃗ 

= ( + + ⋯ + ) = □x1 x2 xn x⃗ x⃗ 

k → ∞
x⃗ 0 P kx⃗ 0

k

P P k
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Question: Let . (a) Find a clever way to figure out the

eigenvalues of  and determine whether it is diagonalizable.

Solution to (a): Since  is stochastic, we know that  is one of its
eigenvalues. That means that the characteristic polynomial factors as

 for some number . Now . On
the other hand,  is the value of the characteristic polynomial when

, so we must have . Therefore the eigenvalues of  are  and
. Since there are two distinct eigenvalues,  is diagonalizable.

(b) Compute , where .

One can show that eigenvectors of  are  and  for  and

 respectively. Therefore

So

and therefore

P = [ ]1/2
1/2

1/3
2/3

P

P 1

(λ − 1)(λ − a) a det(P) = 1/3 − 1/6 = 1/6
det(P)

λ = 0 a = 1/6 P 1
1/6 P

P 10x⃗ 0 = [ ]x⃗ 0
1/2
1/2

P [ ]2
3

[ ]−1
1

λ = 1

1/6

P [ ] = [ ][ ]2
3

−1
1

−1 2
3

−1
1

1
0

0
1/6

P = [ ] [ ]2
3

−1
1

1
0

0
1/6

[ ]2
3

−1
1

−1
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Section 5.1: Orthogonality in :

Chapter 5 is all about orthogonality. We'll learn about (1) orthogonal
projections onto planes and other subspaces; (2) how easy it is to work with
an orthogonal basis; (3) how to orthogonally diagonalize matrices; etc.

Recall that vectors  and  are orthogonal if .

Definition: A set  of vectors in  is an orthogonal set if
all pairs of distinct vectors in the set are orthogonal, i.e. 

whenever .

Example 5.1: The following vectors form an orthogonal set:

Theorem 5.1: If  is an orthogonal set of nonzero vectors in
, then these vectors are linearly independent.

Proof:

P 10x⃗ 0 = [ ] [ ] [ ]2
3

−1
1

110

0

0

(1/6)10 [ ]2
3

−1
1

−1 1/2
1/2

= [ ] [ ] [ ] [ ]2
3

−1
1

1

0

0

1/610
1
5

1
−3

1
2

1/2
1/2

= [ ] [ ]1
5

2 + 3/610

3 − 3/610

2 − 2/610

3 + 2/610

1/2
1/2

=
1
5

⎡
⎣
⎢⎢⎢

2 +
1

2( )610

3 −
1

2( )610

⎤
⎦
⎥⎥⎥

Rn

u⃗ v ⃗ ⋅ = 0u⃗ v ⃗ 

{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k Rn

⋅ = 0v ⃗ i v ⃗ j
i ≠ j

= , = , =v ⃗ 1
⎡
⎣⎢

2
1

−1

⎤
⎦⎥ v ⃗ 2

⎡
⎣⎢

0
1
1

⎤
⎦⎥ v ⃗ 3

⎡
⎣⎢

1
−1

1

⎤
⎦⎥

{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k
Rn
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Suppose that

If we dot both sides with , we get that

But the left-hand-side is equal to

and all terms are zero except the first. This shows that

Since , we must have . By dotting with other vectors, we see
that all s are zero.

Definition: An orthogonal basis for a subspace  of  is a basis that is
also orthogonal.

For example, the vectors in Example 5.1 automatically form a basis for .
Checking orthogonality is much easier than checking linear independence!

Fact: We'll show in Section 5.3 that every subspace has an orthogonal
basis.

It is very easy to figure out coordinates with respect to an orthogonal basis.
Suppose  is an orthogonal basis and

Then if we dot both sides with , we find

and so

+ + ⋯ + =c1v ⃗ 1 c2v ⃗ 2 ckv ⃗ k 0⃗ 

v ⃗ 1

( + + ⋯ + ) ⋅ = ⋅ = 0c1v ⃗ 1 c2v ⃗ 2 ckv ⃗ k v ⃗ 1 0⃗ v ⃗ 1

( ⋅ ) + ( ⋅ ) + ⋯ + ( ⋅ )c1 v ⃗ 1 v ⃗ 1 c2 v ⃗ 2 v ⃗ 1 ck v ⃗ k v ⃗ 1

( ⋅ ) = 0c1 v ⃗ 1 v ⃗ 1

≠ 0v ⃗ 1 = 0c1
ci □

W Rn

R3

{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k

= + ⋯ +w⃗ c1v ⃗ 1 ckv ⃗ k

v ⃗ 1

⋅ = ( ⋅ )w⃗ v ⃗ 1 c1 v ⃗ 1 v ⃗ 1

=c1
⋅w⃗ v ⃗ 1
⋅v ⃗ 1 v ⃗ 1
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Theorem 5.2: Let  be an orthogonal basis for a subspace
 of , and let  be any vector in . Then the unique scalars

 such that

are given by the formula

Example: Find the coordinates of  with respect to the basis

Solution: The coordinates are

So

Normally you have to solve a system to figure out the coordinates!

Definition: An orthonormal set is an orthogonal set of unit vectors. An
orthonormal basis for a subspace  is a basis for  that is an
orthonormal set.

The condition of being orthonormal can be expressed as

{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k
W Rn w⃗ W

, , … ,c1 c2 ck

= + ⋯ +w⃗ c1v ⃗ 1 ckv ⃗ k

=ci
⋅w⃗ v ⃗ i
⋅v ⃗ i v ⃗ i

=w⃗ 
⎡
⎣⎢

1
2
3

⎤
⎦⎥

= , = , =v ⃗ 1
⎡
⎣⎢

2
1

−1

⎤
⎦⎥ v ⃗ 2

⎡
⎣⎢

0
1
1

⎤
⎦⎥ v ⃗ 3

⎡
⎣⎢

1
−1

1

⎤
⎦⎥

= = , = = , = =c1
⋅w⃗ v ⃗ 1
⋅v ⃗ 1 v ⃗ 1

1
6

c2
⋅w⃗ v ⃗ 2
⋅v ⃗ 2 v ⃗ 2

5
2

c3
⋅w⃗ v ⃗ 3
⋅v ⃗ 3 v ⃗ 3

2
3

= + +w⃗ 
1
6

v ⃗ 1
5
2

v ⃗ 2
2
3

v ⃗ 3

W W

⋅ = {v ⃗ i v ⃗ j
0
1

if i ≠ j

if i = j
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Example: The standard basis  is an orthonormal basis for .

For an orthonormal basis, the formula for the coordinates simplifies:

Theorem 5.3: If  is an orthonormal basis of a subspace
, and  is in , then

Note that any orthogonal basis can be converted to an orthonormal basis by
dividing each vector by its length. E.g.

is an orthonormal basis for .

Question: How many orthonormal bases are there for ?

Orthogonal Matrices

Definition: A square matrix with real entries whose columns form an
orthonormal set is called an orthogonal matrix. (Strange name!)

Examples:  and  and

.

Non-example:  is not orthogonal.

{ , … , }e ⃗ 1 e ⃗ n Rn

{ , , … , }q ⃗ 1 q ⃗ 2 q ⃗ k
W w⃗ W

= ( ⋅ ) + ⋯ + ( ⋅ )w⃗ w⃗ q ⃗ 1 q ⃗ 1 w⃗ q ⃗ k q ⃗ k

= , = , =q ⃗ 1
1
6√

⎡
⎣⎢

2
1

−1

⎤
⎦⎥ q ⃗ 2

1
2√

⎡
⎣⎢

0
1
1

⎤
⎦⎥ q ⃗ 3

1
3√

⎡
⎣⎢

1
−1

1

⎤
⎦⎥

R3

R3

Q

A =
⎡
⎣⎢

0
0
1

1
0
0

0
1
0

⎤
⎦⎥ B = [ ]cos θ

sin θ

− sin θ

cos θ

C = [ ] =q ⃗ 1 q ⃗ 2 q ⃗ 3

⎡
⎣
⎢⎢⎢

2
6√

1
6√

− 1
6√

0
1
2√

1
2√

1
3√

− 1
3√

1
3√

⎤
⎦
⎥⎥⎥

D = [ ]1
3

2
4
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Note: In  and , orthogonal matrices correspond exactly to rotations
and reflections. This is an important geometric reason to study them.
Another reason is that we will see in Section 5.4 that they are related to
diagonalization of symmetric matrices.

Theorems 5.4 and 5.5:  is orthogonal if and only if , i.e. if and

only if  is invertible and .

Proof:

The  entry of  is . That is, it equals

. So the columns are orthonormal if and only if the  entry

of  is  when  and  otherwise, which means that .

Since  is square, the last equation is the same as saying the  is

invertible and .

Note that  is much easier to calculate than !

Theorem 5.7: If  is orthogonal, then its rows form an orthonormal set
too.

Proof: Since , we must also have . But the last
equation says exactly that the rows of  are orthonormal.

Another way to put it is that  is also an orthogonal matrix. Look at the
examples again.

Theorem 5.6: Let  be an  matrix. Then the following statements
are equivalent:
a.  is orthogonal.
b.  for every  in .
c.  for every  and  in .

For example,  is rotation, which preserves lengths and angles.

Partial proof of 5.6:

R2 R3

Q Q = IQT

Q =Q−1 QT

ij QQT ( ) ⋅ (Q)rowi QT colj
(Q) ⋅ (Q)coli colj ij

QQT 1 i = j 0 Q = IQT

Q Q

=Q−1 QT □

QT Q−1

Q

Q = IQT Q = IQT

Q □

QT

Q n × n

Q
∥Q ∥ = ∥ ∥x⃗ x⃗ x⃗ Rn

Q ⋅ Q = ⋅x⃗ y ⃗ x⃗ y ⃗ x⃗ y ⃗ Rn

TB
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(a)  (c): Suppose  is orthogonal, so . Then

(c)  (a): Suppose (c) holds. Take  and . Then 

is the th column of  and  is the th column of . (c) says that

the dot product of these columns is

So the columns of  are orthonomal, which means  is orthogonal.

(c)  (b) is clear, by taking  in (c).

(b)  (c): see text. 

⟹ Q Q = IQT

Q ⋅ Q = (Q (Q ) = Q = = ⋅x⃗ y ⃗ x⃗ )T
y ⃗ x⃗ T QT y ⃗ x⃗ T y ⃗ x⃗ y ⃗ 

⟹ =x⃗ e ⃗ i =y ⃗ e ⃗ j Q = Qx⃗ e ⃗ i
i Q Q = Qy ⃗ e ⃗ j j Q

Q ⋅ Q = ⋅ = {e ⃗ i e ⃗ j e ⃗ i e ⃗ j
0
1

if i ≠ j

if i = j

Q Q

⟹ =x⃗ y ⃗ 

⟹ □
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