
Math 1600 Lecture 34, Section 2, 26 Nov 2014

Announcements:

Today we finish 5.2 and start 5.3. Read Sections 5.3 and 5.4 for next class.
Work through recommended homework questions.

Tutorials: Quiz 9 covers 4.6, 5.1 and the first part of 5.2 (orthogonal
complements).

Office hour: Wed 11:30-noon, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC106.

Final exam: Covers whole course, with an emphasis on the material after
the midterm. Our course will end with Section 5.4. I will try to post some
practice problems soon.

Question: If , then 

T/F: An orthogonal basis  must have

Review of Section 5.2: Orthogonal Complements and
Orthogonal Projections

We saw in Section 5.1 that orthogonal and orthonormal bases are
particularly easy to work with. In Section 5.3 (today), we will learn how to
find these kinds of bases. In Section 5.2, we learn the tools which will be
needed in Section 5.3.

Orthogonal Complements

Definition: Let  be a subspace of . A vector  is orthogonal to  if 
is orthogonal to every vector in . The orthogonal complement of  is

W = Rn = { }W ⊥ 0⃗ 

{ , … , }v ⃗ 1 v ⃗ k

⋅ = {v ⃗ i v ⃗ j
0
1

if i ≠ j

if i = j

W Rn v ⃗ W v ⃗ 
W W
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the set of all vectors orthogonal to  and is denoted . So

An example to keep in mind is where  is a plane through the origin in 

and  is , where  is the normal vector to .

Theorem 5.9: Let  be a subspace of . Then:

a.  is a subspace of .

b. 

c. 

d. If , then  is in  if and only if  for
all .

We proved all of these except part (b), which will come today.

Theorem 5.10: Let  be an  matrix. Then

The first two are in  and the last two are in . These are the four
fundamental subspaces of .

Orthogonal projection

Let  be a nonzero vector in , and for any  in  define:

If we write , then  is in ,  is

in , and . We can do this more generally:

Definition: Let  be a subspace of  and let
 be an orthogonal basis for . For

 in , the orthogonal projection of  onto

W W ⊥

= { ∈ : ⋅ = 0 for all  in W}W ⊥ v ⃗ Rn v ⃗ w⃗ w⃗ 

W R3

W ⊥ span( )n⃗ n⃗ W

W Rn

W ⊥ Rn

( = WW ⊥)⊥

W ∩ = { }W ⊥ 0⃗ 
W = span( , … , )w⃗ 1 w⃗ k v ⃗ W ⊥ ⋅ = 0v ⃗ w⃗ i

i

A m × n

(row(A) = null(A) and (col(A) = null( ))⊥ )⊥
AT

Rn Rm

A

u⃗ Rn v ⃗ Rn

( ) = ( ) .proju ⃗ v ⃗ 
⋅u⃗ v ⃗ 
⋅u⃗ u⃗ 

u⃗ 

( ) = − ( )perpu ⃗ v ⃗ v ⃗ proju ⃗ v ⃗ 

W = span( )u⃗ = ( )w⃗ proju ⃗ v ⃗ W = ( )w⃗ ⊥ perpu ⃗ v ⃗ 
W ⊥ = +v ⃗ w⃗ w⃗ ⊥

W Rn

{ , … , }u⃗ 1 u⃗ k W
v ⃗ Rn v ⃗ 
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 is the vector

The component of  orthogonal to  is the
vector

We will show soon that  is in .

Note that multiplying  by a scalar in the earlier

example doesn't change ,  or . We'll see
later that the general definition also doesn't
depend on the choice of orthogonal basis.

New material

Theorem:  is in .

Explain on board.

Now we will see that  and  don't depend on the choice of
orthogonal basis. Here and in the rest of the section, we assume that every
subspace has at least one orthogonal basis.

Theorem 5.11: Let  be a subspace of  and let  be a vector in .

Then there are unique vectors  in  and  in  such that

.

Proof: We saw above that such a decomposition exists, by taking

 and , using an orthogonal basis for .

We now show that this decomposition is unique. So suppose 

is another such decomposition. Then , so

The left hand side is in  and the right hand side is in  (why?), so both

W

( ) = ( ) + ⋯ + ( )projW v ⃗ proju ⃗ 1 v ⃗ proju ⃗ k v ⃗ 

v ⃗ W

( ) = − ( )perpW v ⃗ v ⃗ projW v ⃗ 

( )perpW v ⃗ W ⊥

u⃗ 
W w⃗ w⃗ ⊥

( )perpW v ⃗ W ⊥

proj perp

W Rn v ⃗ Rn

w⃗ W w⃗ ⊥ W ⊥

= +v ⃗ w⃗ w⃗ ⊥

= ( )w⃗ projW v ⃗ = ( )w⃗ ⊥ perpW v ⃗ W

= +v ⃗ w⃗ 1 w⃗ ⊥1
+ = +w⃗ w⃗ ⊥ w⃗ 1 w⃗ ⊥1

− = −w⃗ w⃗ 1 w⃗ ⊥1 w⃗ ⊥

W W ⊥

3 of 7



sides must be zero (why?). So  and .

Note that  is an operation on subspaces, but is not an operation on
vectors.

Now we can prove part (b) of Theorem 5.9.

Corollary 5.12: If  is a subspace of , then .

Proof: If  is in  and  is in , then . This means that  is in

. So .

We need to show that every vector in  is in . So let  be a vector

in . By the previous result, we can write  as , where  is in

 and  is in . Then

So  and  is in .

This next result is related to the Rank Theorem:

Theorem 5.13: If  is a subspace of , then

Proof: Let  be an orthogonal basis of  and let 

be an orthogonal basis of . Then  is an
orthogonal basis for . (Explain.) The result follows.

Example: For  a plane in , .

The Rank Theorem follows if we take , since then

:

Corollary 5.14 (The Rank Theorem, again): If  is an  matrix,
then

=w⃗ w⃗ 1 =w⃗ ⊥ w⃗ ⊥1 □

⊥

W Rn ( = WW ⊥)⊥

w⃗ W x⃗ W ⊥ ⋅ = 0w⃗ x⃗ w⃗ 
(W ⊥)⊥

W ⊆ (W ⊥)⊥

(W ⊥)⊥
W v ⃗ 

(W ⊥)⊥
v ⃗ +w⃗ w⃗ ⊥ w⃗ 

W w⃗ ⊥ W ⊥

0 = ⋅ = ( + ) ⋅v ⃗ w⃗ ⊥ w⃗ w⃗ ⊥ w⃗ ⊥

= ⋅ + ⋅ = 0 + ⋅ = ⋅w⃗ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥

=w⃗ ⊥ 0⃗ =v ⃗ w⃗ W □

W Rn

dim W + dim = nW ⊥

{ , … , }u⃗ 1 u⃗ k W { , … , }v ⃗ 1 v ⃗ ℓ
W ⊥ { , … , , , … , }u⃗ 1 u⃗ k v ⃗ 1 v ⃗ ℓ

Rn □

W R3 2 + 1 = 3

W = row(A)
= null(A)W ⊥

A m × n

4 of 7



Note: The logic here can be reversed. We can use the rank theorem to
prove Theorem 5.13, and Theorem 5.13 can be used to prove Corollary 5.12.

Section 5.3: The Gram-Schmidt Process and the QR
Factorization

The Gram-Schmidt Process

This is a fancy name for a way of converting a basis into an orthogonal or
orthonormal basis. And it's pretty clear how to do it, given what we know.

Example: Let  where  and .

Find an orthogonal basis for .

Solution: Ideas? Do on board.

Question: What if we had a third basis vector ?

Theorem 5.15 (The Gram-Schmidt Process): Let  be a
basis for a subspace  of . Write , ,

, . Define:

Then for each ,  is an orthogonal basis for . In particular,

rank(A) + nullity(A) = n

W = span( , )x⃗ 1 x⃗ 2 =x⃗ 1
⎡
⎣⎢

1
1
0

⎤
⎦⎥ =x⃗ 2

⎡
⎣⎢

−2
0
1

⎤
⎦⎥

W

x⃗ 3

{ , … , }x⃗ 1 x⃗ k
W Rn = span( )W1 x⃗ 1 = span( , )W2 x⃗ 1 x⃗ 2

… = span( , … , )Wk x⃗ 1 x⃗ k

v ⃗ 1

v ⃗ 2

v ⃗ 3

v ⃗ k

= x⃗ 1

= ( ) = −perpW1
x⃗ 2 x⃗ 2

⋅v ⃗ 1 x⃗ 2
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1

= ( ) = − −perpW2
x⃗ 3 x⃗ 3

⋅v ⃗ 1 x⃗ 3
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1
⋅v ⃗ 2 x⃗ 3
⋅v ⃗ 2 v ⃗ 2

v ⃗ 2

⋮

= ( ) = − − ⋯ −perpWk−1
x⃗ k x⃗ k

⋅v ⃗ 1 x⃗ k
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1
⋅v ⃗ k−1 x⃗ k

⋅v ⃗ k−1 v ⃗ k−1
v ⃗ k−1

i { , … , }v ⃗ 1 v ⃗ i Wi
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 is an orthogonal basis for .

Explain verbally.

Example 5.13: Apply Gram-Schmidt to construct an orthogonal basis for

the subspace  of  where

On board, scaling intermediate results. We get

If we want an orthonormal basis, we scale these:

Notes: To compute  you have to use the orthogonal basis of 's

that you have constructed already, not the original basis of 's.

The basis you get depends on the order of the vectors you start with. You

{ , … , }v ⃗ 1 v ⃗ k W = Wk

W = span( , , )x⃗ 1 x⃗ 2 x⃗ 3 R4

= , = , =x⃗ 1

⎡
⎣
⎢⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥⎥ x⃗ 2

⎡
⎣
⎢⎢⎢

2
1
0
1

⎤
⎦
⎥⎥⎥ x⃗ 3

⎡
⎣
⎢⎢⎢

2
2
1
2

⎤
⎦
⎥⎥⎥

= , = , =v ⃗ 1

⎡
⎣
⎢⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥⎥ v ⃗ ′2

⎡
⎣
⎢⎢⎢

3
3
1
1

⎤
⎦
⎥⎥⎥ v ⃗ ′3

⎡
⎣
⎢⎢⎢

−1
0
1
2

⎤
⎦
⎥⎥⎥

= = , = = ,q ⃗ 1
1

∥ ∥v ⃗ 1
v ⃗ 1

1
2

⎡
⎣
⎢⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥⎥ q ⃗ 2

1
∥ ∥v ⃗ ′2

v ⃗ ′2
1
20−−√

⎡
⎣
⎢⎢⎢

3
3
1
1

⎤
⎦
⎥⎥⎥

= =q ⃗ 3
1

∥ ∥v ⃗ ′3
v ⃗ ′3

1
6√

⎡
⎣
⎢⎢⎢

−1
0
1
2

⎤
⎦
⎥⎥⎥

perpWi
v ⃗ j

x⃗ j
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should always do a question using the vectors in the order given, since that
order will be chosen to minimize the arithmetic.

If you are asked to find an orthonormal basis, normalize each  at the end.

(It is correct to normalize earlier, but can be messier.)

v ⃗ j
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