
Math 1600 Lecture 35, Section 2, 28 Nov 2014

Announcements:

Today we finish 5.3 and start 5.4. Read Section 5.4 for next class. Work through
recommended homework questions.

Tutorials: None next week.

Help Centers: Monday-Friday 2:30-6:30 in MC 106, until Friday, Dec 5 2014.

Final exam: Monday, December 8, 9am to noon. All students in Section 001 write
in NS1. For students in Section 002: A to TOPA write in NS1, and TU to Z write in
NS7.

Review Sessions: Wednesday, in class, for section 002. Another being planned
too. Bring questions!

Review of Section 5.2: Orthogonal Complements and
Orthogonal Projections

Orthogonal Complements

Definition: Let  be a subspace of . A vector  is orthogonal to  if  is
orthogonal to every vector in . The orthogonal complement of  is the set

of all vectors orthogonal to  and is denoted . So

Orthogonal projection

Definition: Let  be a subspace of  and let  be an orthogonal
basis for . For  in , the orthogonal projection of  onto  is the vector

The component of  orthogonal to  is the vector

W Rn v ⃗ W v ⃗ 
W W

W W ⊥

= { ∈ : ⋅ = 0 for all  in W}W ⊥ v ⃗ Rn v ⃗ w⃗ w⃗ 

W Rn { , … , }u⃗ 1 u⃗ k
W v ⃗ Rn v ⃗ W

( ) = ( ) + ⋯ + ( )projW v ⃗ proju ⃗ 1 v ⃗ proju ⃗ k v ⃗ 

v ⃗ W

( ) = − ( )perpW v ⃗ v ⃗ projW v ⃗ 
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We showed that  is in  and  is in .

Here and in the rest of Section 5.2, we assume that every subspace has at least
one orthogonal basis.

Theorem 5.11: Let  be a subspace of  and let  be a vector in . Then

there are unique vectors  in  and  in  such that .

Theorem 5.13: If  is a subspace of , then

The Rank Theorem follows if we take , since then .

Section 5.3: The Gram-Schmidt Process and the QR
Factorization

The Gram-Schmidt Process

This is a fancy name for a way of converting a basis into an orthogonal or
orthonormal basis. And it's pretty clear how to do it, given what we know.

Theorem 5.15 (The Gram-Schmidt Process): Let  be a basis for a
subspace  of . Write , , ,

. Define:

Then for each ,  is an orthogonal basis for . In particular,
 is an orthogonal basis for .

Notes: To compute  you have to use the orthogonal basis of 's that you

( )projW v ⃗ W ( )perpW v ⃗ W ⊥

W Rn v ⃗ Rn

w⃗ W w⃗ ⊥ W ⊥ = +v ⃗ w⃗ w⃗ ⊥

W Rn

dim W + dim = nW ⊥

W = row(A) = null(A)W ⊥

{ , … , }x⃗ 1 x⃗ k
W Rn = span( )W1 x⃗ 1 = span( , )W2 x⃗ 1 x⃗ 2 …

= span( , … , )Wk x⃗ 1 x⃗ k

v ⃗ 1

v ⃗ 2

v ⃗ 3

v ⃗ k

= x⃗ 1

= ( ) = −perpW1
x⃗ 2 x⃗ 2

⋅v ⃗ 1 x⃗ 2
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1

= ( ) = − −perpW2
x⃗ 3 x⃗ 3

⋅v ⃗ 1 x⃗ 3
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1
⋅v ⃗ 2 x⃗ 3
⋅v ⃗ 2 v ⃗ 2

v ⃗ 2

⋮

= ( ) = − − ⋯ −perpWk−1
x⃗ k x⃗ k

⋅v ⃗ 1 x⃗ k
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1
⋅v ⃗ k−1 x⃗ k

⋅v ⃗ k−1 v ⃗ k−1
v ⃗ k−1

i { , … , }v ⃗ 1 v ⃗ i Wi

{ , … , }v ⃗ 1 v ⃗ k W = Wk

perpWi
v ⃗ j
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have constructed already, not the original basis of 's.

The basis you get depends on the order of the vectors you start with. You should
always do a question using the vectors in the order given, since that order will be
chosen to minimize the arithmetic.

If you are asked to find an orthonormal basis, normalize each  at the end. (It is
correct to normalize earlier, but can be messier.)

New: You don't need to check that the starting vectors are linearly independent. If

they are dependent, then one or more of the 's will be , and you can just ignore
it.

New: This theorem shows that every subspace has an orthogonal basis. We used
the material from 5.2, but only for subspaces for which we had already computed
an orthogonal basis, so the logic isn't circular.

Example 5.13: Apply Gram-Schmidt to construct an orthogonal basis for the

subspace  of  where

We get

If we want an orthonormal basis, we scale them:

x⃗ j

v ⃗ j

v ⃗ j 0⃗ 

W = span( , , )x⃗ 1 x⃗ 2 x⃗ 3 R4

= , = , =x⃗ 1

⎡
⎣
⎢⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥⎥ x⃗ 2

⎡
⎣
⎢⎢⎢

2
1
0
1

⎤
⎦
⎥⎥⎥ x⃗ 3

⎡
⎣
⎢⎢⎢

2
2
1
2

⎤
⎦
⎥⎥⎥

= , = , =v ⃗ 1

⎡
⎣
⎢⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥⎥ v ⃗ ′2

⎡
⎣
⎢⎢⎢

3
3
1
1

⎤
⎦
⎥⎥⎥ v ⃗ ′3

⎡
⎣
⎢⎢⎢

−1
0
1
2

⎤
⎦
⎥⎥⎥

= , = , =q ⃗ 1
1
2

⎡
⎣
⎢⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥⎥ q ⃗ 2

1
20−−√

⎡
⎣
⎢⎢⎢

3
3
1
1

⎤
⎦
⎥⎥⎥ q ⃗ 3

1
6√

⎡
⎣
⎢⎢⎢

−1
0
1
2

⎤
⎦
⎥⎥⎥
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New material

Example: Is  in ?

Solution: We can compute that

so the answer is no.

Example: Compute the projection of  onto .

Solution: We use that . So, by the work done for

the previous example, we get . (Do not try to work directly with  and
.)

Example 5.14: Find an orthogonal basis for  that contains the vector

.

Solution: Choose any two vectors  and  so that  is a basis for

. For example, you can take

=w⃗ 

⎡
⎣
⎢⎢⎢

8
−2

2
0

⎤
⎦
⎥⎥⎥ W

( ) = 2 + − =projW w⃗ v ⃗ 1 v ⃗ ′2 v ⃗ ′3

⎡
⎣
⎢⎢⎢

6
1

−2
1

⎤
⎦
⎥⎥⎥

=w⃗ 

⎡
⎣
⎢⎢⎢

8
−2

2
0

⎤
⎦
⎥⎥⎥ span( , )x⃗ 1 x⃗ 2

span( , ) = span( , )x⃗ 1 x⃗ 2 v ⃗ 1 v ⃗ ′2
2 +v ⃗ 1 v ⃗ ′2 x⃗ 1

x⃗ 2

R3

=v ⃗ 1
⎡
⎣⎢

1
2
3

⎤
⎦⎥

x⃗ 2 x⃗ 3 { , , }v ⃗ 1 x⃗ 2 x⃗ 3
R3

= and =x⃗ 2
⎡
⎣⎢

0
1
0

⎤
⎦⎥ x⃗ 3

⎡
⎣⎢

0
0
1

⎤
⎦⎥

4 of 7



Then apply Gram-Schmidt, using the vectors in that order, so  doesn't change.
(Details in text.)

QR Factorization

We can apply the above to obtain:

Theorem 5.16: Let  be an  matrix with linearly independent
columns. Then  can be factored as , where  is an  matrix with
orthonormal columns and  is an invertible upper triangular  matrix.

Note that we must have . (Why?)

This is useful for numerically approximating eigenvalues (see the Exploration after
Section 5.3) and for least squares approximation (Chapter 7), but we won't cover
these applications.

Explanation: Write  for the linearly independent columns of . Apply
Gram-Schmidt to produce orthonormal vectors  with

 for each . Therefore we can find scalars
 such that:

That is,

One can also see that the diagonal entries  are non-zero. (Explain.) Therefore,
 and  is invertible.

Note that .

v ⃗ 1

A m × n
A A = QR Q m × n

R n × n

m ≥ n

, … ,a⃗ 1 a⃗ n A
, … ,q ⃗ 1 q ⃗ n

span( , … , ) = span( , … , )a⃗ 1 a⃗ i q ⃗ 1 q ⃗ i i
rij

a⃗ 1
a⃗ 2

a⃗ n

= r11q ⃗ 1
= +r12q ⃗ 1 r22q ⃗ 2

⋮

= + + ⋯ +r1nq ⃗ 1 r2nq ⃗ 2 rnnq ⃗ n

A = [ ⋯ ] = [ ⋯ ] = QRa⃗ 1 a⃗ n q ⃗ 1 q ⃗ n

⎡

⎣
⎢⎢⎢⎢⎢

r11

0

⋮
0

r12

r22

⋮
0

⋯
⋯

⋱
⋯

r1n

r2n

⋮
rnn

⎤

⎦
⎥⎥⎥⎥⎥

rii

det R ≠ 0 R

= ⋅rij q ⃗ i a⃗ j
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Example 5.15: Find a QR factorization of .

Solution: The columns of  are the vectors from Example 5.13, so we get the
matrix

We want to find  such that . Since the columns of  are orthonormal,

we have . So  and one can compute  by matrix
multiplication to find

(See text for details.) Note that you can save some work, since you know that the
entries below the diagonal must be zero.

Also note that this matrix multiplication is exactly working out the components of
 with respect to the orthonormal basis of 's, using that .

Section 5.4: Orthogonal Diagonalization of Symmetric Matrices

In Section 4.4 we learned all about diagonalizing a square matrix . One of the
difficulties that arose is that a matrix with real entries can have complex
eigenvalues. In this section, we focus on the case where  is a symmetric matrix,
and we will show that the eigenvalues of  are always real and that  is always
diagonalizable!

Recall that a square matrix  is symmetric if .

A =

⎡
⎣
⎢⎢⎢

1
−1
−1

1

2
1
0
1

2
2
1
2

⎤
⎦
⎥⎥⎥

A

Q =

⎡
⎣
⎢⎢⎢⎢

1/2
−1/2
−1/2

1/2

3/ 20−−√
3/ 20−−√
1/ 20−−√
1/ 20−−√

−1/ 6√
0

1/ 6√
2/ 6√

⎤
⎦
⎥⎥⎥⎥

R A = QR Q

Q = IQT A = QR = RQT QT R

R = A = ⋯ =QT
⎡
⎣⎢

2
0
0

1
5√

0

1/2
3 /25√

/26√

⎤
⎦⎥

a⃗ i q ⃗ j = ⋅rij q ⃗ i a⃗ j

A

A
A A

A = AAT
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Examples: , , , .

Non-examples: , .

Example 5.16: If possible, diagonalize . On board, if time.

Definition: A square matrix  is orthogonally diagonalizable if there exists an

orthogonal matrix  such that  is a diagonal matrix .

[ ]1
2

2
3

[ ]3
2

2
3

[ ]1
0

0
3

⎡
⎣⎢

1
2
3

2
4
5

3
5
6

⎤
⎦⎥

[ ]3
2

−2
3

⎡
⎣⎢

1
5
3

2
4
2

3
5
6

⎤
⎦⎥

A = [ ]1
2

2
−2

A

Q AQQT D
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