
Math 1600 Lecture 36, Section 2, 1 Dec 2014

Announcements:

Today we finish Section 5.4 and finish the course material. Re-read Chapters 1
through 5 for the final. Work through recommended homework questions. New
practice questions are posted at the bottom of the exercises page.

Help Centers: Mon-Fri 2:30-6:30 in MC 106, until Friday, Dec 5 2014.

Office Hour: Monday, 3:00-3:30, MC103B.

Review Sessions: Wednesday, in class. Also: Friday, 3:30-4:30 and Saturday,
1:30-2:30, both in MC105B. Bring questions!

Final exam: Covers whole course, with an emphasis on the material after the
midterm. It does not cover , code vectors, Markov chains or network analysis.
Everything else we covered in class is considered exam material. Questions are
similar to textbook questions, midterm questions and quiz questions.

Review of Section 5.4 from last class

Section 5.4: Orthogonal Diagonalization of Symmetric Matrices

In Section 4.4 we learned all about diagonalizing a square matrix . One of the
difficulties that arose is that a matrix with real entries can have complex
eigenvalues. In this section, we focus on the case where  is a symmetric matrix,
and we will show that the eigenvalues of  are always real and that  is always
diagonalizable!

(Remember our convention that, unless we say otherwise, the entries of  are
assumed to be real.)

Symmetric matrices are important in applications. For example, in quantum
theory, they correspond to observable quantities, and their eigenvalues are the
possible values that can be observed.

Recall that a square matrix  is symmetric if .
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Examples: , , , .

Non-examples: , .

Example 5.16: If possible, diagonalize .

We found that  has real eigenvalues, is diagonalizable, and that the eigenvectors
are orthogonal.

Definition: A square matrix  is orthogonally diagonalizable if there exists an

orthogonal matrix  such that  is a diagonal matrix .

New material

Notice that if  is orthogonally diagonalizable, then , so

. Therefore

We have proven:

Theorem 5.17: If  is orthogonally diagonalizable, then  is symmetric.

The rest of this section is working towards proving that every symmetric matrix 
is orthogonally diagonalizable. I'll organize this a bit more efficiently than the
textbook.

Theorem 5.19: If  is a symmetric matrix, then eigenvectors corresponding to
distinct eigenvalues of  are orthogonal.

In non-symmetric examples we've seen earlier, the eigenvectors were not
orthogonal.

Proof: Suppose  and  are eigenvectors corresponding to distinct eigenvalues
 and . Then we have
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So , which implies that .

Theorem 5.18: If  is a real symmetric matrix, then the eigenvalues of  are
real.

To prove this, we have to recall some facts about complex numbers. If ,
then its complex conjugate is , which is the reflection in the real
axis. So  is real if and only if .

Proof: Suppose that  is an eigenvalue of  with eigenvector . Then the

complex conjugate  is an eigenvector with eigenvalue , since

If , then Theorem 5.19 shows that .

But if  then  and so

since . Therefore, , so  is real. 

Example 5.17 and 5.18: The eigenvalues of  are  and ,

with eigenspaces

We see that every vector in  is orthogonal to every vector in . (In fact,

.)
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But notice that the vectors in  aren't necessarily orthogonal to each other.
However, we can apply Gram-Schmidt to get an orthogonal basis for :

We normalize the three basis eigenvectors and put them in the columns of a

matrix  Then , so

 is orthogonally diagonalizable.

The spectral theorem

The set of eigenvalues of a matrix are called its spectrum because the spectral
lines you see when light from an atom is sent through a prism correspond to the
eigenvalues of a certain matrix.

Theorem 5.20 (The spectral theorem): Let  be an  real matrix. Then 
is symmetric if and only if  is orthogonally diagonalizable.

Proof: We have seen that every orthogonally diagonalizable matrix is symmetric.

We also know that if  is symmetric, then its eigenvectors for distinct eigenvalues
are orthogonal. So, by using Gram-Schmidt on the eigenvectors with the same
eigenvalue, we get an orthogonal set of eigenvectors.

The only thing that isn't clear is that we get  eigenvectors. The argument here is
a bit complicated. See the text. .

E1
E1

v ⃗ 1

v ⃗ 2

= =x⃗ 1
⎡
⎣⎢

−1
0
1

⎤
⎦⎥

= −x⃗ 2
⋅v ⃗ 1 x⃗ 2
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1

= − =
⎡
⎣⎢

−1
1
0

⎤
⎦⎥

1
2

⎡
⎣⎢

−1
0
1

⎤
⎦⎥

⎡
⎣⎢

−1/2
1

−1/2

⎤
⎦⎥

Q = .
⎡
⎣⎢

1/ 3√

1/ 3√

1/ 3√

−1/ 2√

0

1/ 2√

−1/ 6√

2/ 6√

−1/ 6√

⎤
⎦⎥ AQ =QT

⎡
⎣⎢

4
0
0

0
1
0

0
0
1

⎤
⎦⎥

A

A n × n A
A

A

n
□

4 of 7



Method for orthogonally diagonalizing a real symmetric  matrix A:
1. Find all eigenvalues. They will all be real, and the algebraic multiplicities will
add up to .
2. Find a basis for each eigenspace.
3. If an eigenspace has dimension greater than one, use Gram-Schmidt to create
an orthogonal basis of that eigenspace.
4. Normalize all basis vectors. Put them in the columns of , and make the
eigenvalues (in the same order) the diagonal entries of a diagonal matrix .

5. Then .

Note that  can be expressed in terms of its eigenvectors  and
eigenvalues  (repeated according to their multiplicity) as

This is called the spectral decomposition of .

Note that the  matrix  sends a vector  to

, so it is orthogonal projection onto .

Thus you can compute  by projecting  onto each , multiplying by , and
adding the results.

Example 5.20: Find a  matrix with eigenvalues 3 and -2 and corresponding

eigenvectors  and .

Method 1: Let  and . Then
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This didn't use anything from this section and works for any diagonalizable matrix.

Method 2: First normalize the eigenvectors to have length 1. Then use the
spectral decomposition:

This method only works because the given vectors are orthogonal.

See Example 5.19 in the text for another example.

True/false: The matrix

is diagonalizable.

True/false: Its eigenvalues are real.

True/false: Any two eigenvectors are orthogonal.
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It's been fun! Good luck on the final!
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