
Math 1600 Lecture 4, Section 2, 12 Sept 2014

Announcements:

Read Section 1.3 for next class. Work through recommended homework
questions.

Tutorials start next week, and include a quiz covering Sections 1.1, 1.2
and the code vectors part of 1.4. It does not cover the Exploration after
Section 1.2.
Questions are similar to homework questions, but may be slightly different.
There will be two true/false questions, for which you must explain your
answers.
The quizzes last 20 minutes, and are at the end of the tutorial, so you have
time for questions at the beginning. You must write in the tutorial you are
registered in. Different sections have different quizzes, but it is still
considered an academic offense to share information about quizzes.
No calculators or other aids are permitted on quizzes or exams.

Today is the last day you can switch tutorial sections. This must be done
via paper add/drop in MC104, 9:30-3:30. No line ups! Updated counts:

003  W   9:30AM   KB-K103     40 !
009  W   9:30AM   UCC-65      17 *
008  W  11:30AM   UCC-60      40 !
006  W   3:30PM   UC-202      35
005  Th 11:30AM   SSC-3010    39 !
007  Th 12:30PM   MC-17       35
004  Th  2:30PM   UC-202      34

Office hours: Monday, 3:00-3:30 and Wednesday, 11:30-noon, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106 starting Wednesday,
September 17.

Lecture notes (this page) available from course web page.
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A copy of the Solutions Manual has been put on reserve in Taylor Library.

The midterm is in 6 weeks!

Partial review of last lecture:

Section 1.2: Length and Angle: The Dot Product

Definition: The dot product or scalar product of vectors  and  in 
is the real number defined by

This has familiar properties; see Theorem 1.2.

Definition: The length or norm of  is the scalar  defined by

A vector of length 1 is called a unit vector.

Theorem 1.5: The Triangle Inequality: For all  and 
in ,

u⃗ v ⃗ Rn

⋅ := + ⋯ + .u⃗ v ⃗ u1v1 unvn

v ⃗ ∥ ∥v ⃗ 

∥ ∥ := = .v ⃗ ⋅v ⃗ v ⃗ − −−√ + ⋯ +v2
1 v2

n

− −−−−−−−−−√

u⃗ v ⃗ 
Rn
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We define the distance between vectors  and  by the
formula

Angles from dot product

Theorem 1.4: The Cauchy-Schwarz Inequality: For all  and  in ,

We can therefore use the dot product to define the angle between two
vectors  and  in  by the formula

where we choose . This makes sense because the fraction is
between -1 and 1.

To help remember the formula for , note that the denominator
normalizes the two vectors to be unit vectors. The formula can also be
written

New material

On board: Angle between  and .

For a random example, you'll need a calculator, but for hand calculations
you can remember these cosines:

∥ + ∥ ≤ ∥ ∥ + ∥ ∥.u⃗ v ⃗ u⃗ v ⃗ 

u⃗ v ⃗ 

d( , ) := ∥ − ∥ = .u⃗ v ⃗ u⃗ v ⃗ ( − + ⋯ + ( −u1 v1)2
un vn)2

− −−−−−−−−−−−−−−−−−−−−−−√

u⃗ v ⃗ Rn

| ⋅ | ≤ ∥ ∥ ∥ ∥.u⃗ v ⃗ u⃗ v ⃗ 

u⃗ v ⃗ Rn

cos θ = , i.e., θ := arccos ( ) ,
⋅u⃗ v ⃗ 

∥ ∥ ∥ ∥u⃗ v ⃗ 
⋅u⃗ v ⃗ 

∥ ∥ ∥ ∥u⃗ v ⃗ 

0 ≤ θ ≤ 180∘

cos θ

⋅ = ∥ ∥ ∥ ∥ cos θ.u⃗ v ⃗ u⃗ v ⃗ 

= [1, 2, 1, 1, 1]u⃗ = [0, 3, 0, 0, 0]v ⃗ 
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using the usual triangles.

Orthogonal Vectors

How can we tell whether two vectors are orthogonal / perpendicular?
Easy:  is the only angle for which .
So  and  are orthogonal if and only if .

Example: If  and  in , then
, so  and  are

orthogonal.

Also,  and  in  are orthogonal, since
.

An applet illustrating the dot product. (Another one: javascript, and java.)

Pythagorean theorem in : If  and  are orthogonal, then

Explain on board, using Theorem 1.2.

Projections

Use board to derive formula for the projection of  onto :

Here  must not be , but  can be any vector. To help remember the
formula, note that the denominator ensures that the answer does not
depend on the length of .

cos 0∘

cos 60∘

= = 1,
4√

2

= = ,
1√

2
1
2

cos 30∘

cos 90∘

= ,
3√

2

= = 0,
0√

2

cos 45∘= = ,
2√

2
1
2√

θ = 90∘ cos θ = 0
u⃗ v ⃗ ⋅ = 0u⃗ v ⃗ 

= [1, 2, 3]u⃗ = [1, 1, −1]v ⃗ R3

⋅ = 1 ⋅ 1 + 2 ⋅ 1 + 3 ⋅ (−1) = 1 + 2 − 3 = 0u⃗ v ⃗ u⃗ v ⃗ 

= [1, 2, 3]u⃗ = [1, 1, 1]v ⃗ Z3
3

⋅ = 1 + 2 + 3 = 6 = 0 (mod 3)u⃗ v ⃗ 

Rn u⃗ v ⃗ 

∥ + = ∥ + ∥ .u⃗ v ⃗ ∥2
u⃗ ∥2

v ⃗ ∥2

v ⃗ u⃗ 

( ) = ( ) .proju ⃗ v ⃗ 
⋅u⃗ v ⃗ 
⋅u⃗ u⃗ 

u⃗ 

u⃗ 0⃗ v ⃗ 

u⃗ 
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This applet is useful for understanding projections as well. Java version.

Example: If  and  then

Questions

True/false: If ,  and  are vectors in  such that  and

, then .

False. For example, if ,  and , then 
and  but .

True/false: If  is orthogonal to both  and , then  is orthogonal to
.

True, because .

You only answer true if a statement is always true. You justify this answer
by giving a general explanation of why it is always true, not just an example
where it happens to be true.

You answer false if a statement can in some case be false. You justify this
answer by giving an explicit example where the statement is false.

Question: Suppose I tell you that  and . What is
?

Solution: .

Question: Does  always point in the same direction as ?

Solution: No. It is always parallel, but might point in the opposite direction.
For example, if  and  then .

= [−1, 1, 0]u⃗ = [1, 2, 3]v ⃗ 

( ) =proju ⃗ v ⃗ 
⋅u⃗ v ⃗ 
⋅u⃗ u⃗ 

u⃗ = [−1, 1, 0]
−1 + 2 + 0
1 + 1 + 0

= [−1, 1, 0] = [− , , 0]
1
2

1
2

1
2

u⃗ v ⃗ w⃗ Rn ⋅ = ⋅u⃗ v ⃗ u⃗ w⃗ 
≠u⃗ 0⃗ =v ⃗ w⃗ 

= [1, 0]u⃗ = [0, 1]v ⃗ = [0, 2]w⃗ ⋅ = 0u⃗ v ⃗ 
⋅ = 0u⃗ w⃗ ≠v ⃗ w⃗ 

u⃗ v ⃗ w⃗ u⃗ 
2 + 3v ⃗ w⃗ 

⋅ (2 + 3 ) = 2 ⋅ + 3 ⋅ = 2(0) + 3(0) = 0u⃗ v ⃗ w⃗ u⃗ v ⃗ u⃗ w⃗ 

⋅ = 1/2u⃗ v ⃗ ⋅ = −1u⃗ w⃗ 
⋅ (2 + 3 )u⃗ v ⃗ w⃗ 

⋅ (2 + 3 ) = 2 ⋅ + 3 ⋅ = 2(1/2) + 3(−1) = −2u⃗ v ⃗ w⃗ u⃗ v ⃗ u⃗ w⃗ 

( )proju ⃗ v ⃗ u⃗ 

= [1, 0]u⃗ = [−1, 1]v ⃗ ( ) = [−1, 0] = −proju ⃗ v ⃗ u⃗ 
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Section 1.4: Applications: Code Vectors (we aren't
covering force vectors)

We're going to study a way to encode data that allows us to detect
transmission errors. Used on CDs, UPC codes, ISBN numbers, credit card
numbers, etc.

Example 1.37: Suppose we want to send the four commands "forward",
"back", "left" and "right" as a sequence of 0s and 1s. We could use the
following code:

But if there is an error in our transmission, the Mars rover will get the wrong
message and will drive off of a cliff, wasting billions of dollars of taxpayer
money (but making for some good NASA jokes).

Here's a more clever code:

If any single bit (binary digit, a 0 or a 1) is flipped during transmission, the
Mars rover will notice the error, since all of the code vectors have an even
number of 1s. It could then ask for retransmission of the command.

This is called an error-detecting code. Note that it is formed by adding a
bit to the end of each of the original code vectors so that the total number
of 1s is even.

In vector notation, we replace a vector  with the vector

 such that , where

.

Exactly the same idea works for vectors in ; see Example 1.39 in the text.

Note: One problem with the above scheme is that transposition errors are
not detected: if we want to send  but the first two bits are
exchanged, the rover receives , which is also a valid command. We'll
see codes that can detect transpositions.

forward = [0, 0], back = [0, 1], left = [1, 0], right = [1, 1].

forward = [0, 0, 0], back = [0, 1, 1], left = [1, 0, 1], right = [1, 1, 0].

= [ , , … , ]b ⃗ v1 v2 vn

= [ , , … , , d]v ⃗ v1 v2 vn ⋅ = 0 (mod 2)1⃗ v ⃗ 
= [1, 1, … , 1]1⃗ 

Zn
3

[0, 1, 1]
[1, 0, 1]
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