
Math 1600 Lecture 5, Section 2, 15 Sep 2014

Announcements:

Continue reading Section 1.3 and also the Exploration on cross products
for next class. Work through recommended homework questions.

Quiz 1 this week in tutorials. Quiz 1 will cover Sections 1.1, 1.2 and the
code vectors part of 1.4. It does not cover the Exploration after Section
1.2. See last lecture for how they run.

Office hours: Monday, 3:00-3:30 and Wednesday, 11:30-noon,
MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106 starting Wednesday,
September 17. Extra Help Centers: Today and tomorrow (Sept 15 and
16), 4-5pm, MC106.

Review: Section 1.4: Applications: Code Vectors

Example 1.37: A code for rover commands:

If any single bit (binary digit, a 0 or a 1) is flipped during transmission,
the Mars rover will notice the error, since all of the code vectors have
an even number of 1s. It could then ask for retransmission of the
command.

This is called an error-detecting code.

In vector notation, we replace a vector  with the

vector  such that , where

.

forward = [0, 0, 0], back = [0, 1, 1], left = [1, 0, 1], right = [1, 1, 0].

= [ , , … , ]b ⃗ v1 v2 vn

= [ , , … , , d]v ⃗ v1 v2 vn ⋅ = 0 (mod 2)1⃗ v ⃗ 
= [1, 1, … , 1]1⃗ 
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Exactly the same idea works for vectors in ; see Example 1.39 in
the text.

Note: One problem with the above scheme is that transposition errors
are not detected: if we want to send  but the first two bits are
exchanged, the rover receives , which is also a valid command.
We'll see codes that can detect transpositions.

New material

Example 1.40 (UPC Codes): The Univeral Product

Code (bar code) on a product is a vector in , such
as

Instead of using  as the check vector, UPC uses

The last digit is chosen so that .

For example, if we didn't know the last digit of , we could compute

and so we would find that we need to take , since
.

This detects any single error. The pattern in  was chosen so that it
detects many transpositions, but it doesn't detect when digits whose
difference is 5 are transposed. For example,  and

, and these are the same modulo .

Example 1.41 (ISBN Codes): ISBN codes use vectors in . The
check vector is . Because 11 is a prime
number, this code detects all single errors and all single transposition

Zn
3

[0, 1, 1]
[1, 0, 1]

Z12
10

= [6, 7, 1, 8, 6, 0, 0, 1, 3, 6, 2, 4].u⃗ 

1⃗ 

= [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1].c ⃗ 

⋅ = 0 (mod 10)c ⃗ u⃗ 

u⃗ 

⋅ [6, 7, 1, 8, 6, 0, 0, 1, 3, 6, 2, d] = ⋯ = 6 + d (mod 10)c ⃗ 

d = 4
6 + 4 = 0 (mod 10)

c ⃗ 

3 ⋅ 5 + 1 ⋅ 0 = 15
3 ⋅ 0 + 1 ⋅ 5 = 5 10

Z10
11

= [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]c ⃗ 
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errors. See text for a worked example.

Summary: To create a code, you choose  (which determines the
allowed digits),  (the number of digits in a code word), and a check
vector . Then the valid words  are those with . If 
ends in a , then you can always choose the last digit of  to make it
valid.

Note: This kind of code can only reliably detect one error, but more
sophisticated codes can detect multiple errors. There are even error-
correcting codes, which can correct multiple errors in a transmission
without needing it to be resent. In fact, you can drill small holes in a CD,
and it will still play the entire content perfectly.

Question: The Dan code uses vectors in  with check vector
. Find the check digit  in the code word .

Solution: We compute

To make , we choose .

This is the end of the material for quiz 1. (We aren't covering force
vectors.)

Section 1.3: Lines and planes in  and 

[These notes are a summary of the material, which will be
supplemented by some diagrams on the board.]

We study lines and planes because they come up directly in
applications, but also because the solutions to many other types of
problems can be expressed using the language of lines and planes.

m
n

∈c ⃗ Zn
m v ⃗ ⋅ = 0c ⃗ v ⃗ c ⃗ 

1 v ⃗ 

Z3
4

= [3, 2, 1]c ⃗ d = [2, 2, d]v ⃗ 

⋅ = [3, 2, 1] ⋅ [2, 2, d]c ⃗ v ⃗ = 3 ⋅ 2 + 2 ⋅ 2 + 1 ⋅ d

= 10 + d = 2 + d (mod 4)

⋅ = 0 (mod 4)c ⃗ v ⃗ d = 2

R2 R3
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Lines in  and 

Given a line , we want to find equations that tell us whether a point
 or  is on the line. We'll write  or 

for the position vector of the point, so we can use vector notation.

The vector form of the equation for  is:

where  is the position vector of a point on the

line,  is a vector parallel to the line, and .

This is concise and works in  and .

l

p

d

x

If we expand the vector form into components, we get the parametric
form of the equations for :

Lines in 

There are additional ways to describe a line in

.

The normal form of the equation for  is:

where  is a vector that is normal =
perpendicular to .

l

p

n

x-p

x

If we write this out in components, with , we get the general
form of the equation for :

R2 R3

ℓ
(x, y) (x, y, z) = [x, y]x⃗ = [x, y, z]x⃗ 

ℓ

= + tx⃗ p ⃗ d ⃗ 

p ⃗ 
d ⃗ t ∈ R

R2 R3

ℓ

x

y

(z

= + tp1 d1

= + tp2 d2

= + t if we are in )p3 d3 R3

R2

R2

ℓ

⋅ ( − ) = 0 or ⋅ = ⋅ ,n⃗ x⃗ p ⃗ n⃗ x⃗ n⃗ p ⃗ 

n⃗ 
ℓ

= [a, b]n⃗ 
ℓ
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where . When , this can be rewritten as ,
where  and .

Note: All of these simplify when the line goes through the origin, as

then you can take .

Example: Find all four forms of the equations for the line in  going
through  and .

Note: None of these equations is unique, as ,  and  can all change.
The general form is closest to being unique: it is unique up to an overall
scale factor.

Lines in 

Most of the time, one uses the vector and parametric forms above. But
there is also a version of the normal and general forms. To specify the

direction of a line in , it is necessary to specify two non-parallel
normal vectors  and . Then the normal form is

When expanded into components, this gives the general form:

Since both equations must be satisfied, this can be interpreted as the
intersection of two planes. (We'll discuss planes in a second.)

Question: What are the pros and cons of the different ways of
describing a line?

ax + by = c,

c = ⋅n⃗ p ⃗ b ≠ 0 y = mx + k
m = −a/b k = c/b

=p ⃗ 0⃗ 

R2

A = [1, 1] B = [3, 2]

p ⃗ d ⃗ n⃗ 

R3

R3

n⃗ 1 n⃗ 2

⋅n⃗ 1 x⃗ 

⋅n⃗ 2 x⃗ 

= ⋅ typo in book in Table 1.3:n⃗ 1 p ⃗ 

= ⋅ there should be no subscripts on n⃗ 2 p ⃗ p ⃗ 

x + y + za1 b1 c1

x + y + za2 b2 c2

= ,d1

= .d2
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Planes in 

Normal form:

This is exactly like the normal form for the equation for a line in .
When expanded into components, it gives the general form:

where  and .

R3

⋅ ( − ) = 0 or ⋅ = ⋅ .n⃗ x⃗ p ⃗ n⃗ x⃗ n⃗ p ⃗ 

R2

ax + by + cz = d,

= [a, b, c]n⃗ d = ⋅n⃗ p ⃗ 
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