- 1. For each of the following statements, circle **T** if the statement is always true and **F** if it can be false. To receive credit, you must give a brief justification for your answer.
- [2] (a) If \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^3 , then $\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$.

Solution: False. For example, $\vec{u} = [1, 0, 0]$ and $\vec{v} = [0, 1, 0]$ are orthogonal, but $||\vec{u} + \vec{v}|| = ||[1, 1, 0]|| = \sqrt{2}$ and $||\vec{u}|| + ||\vec{v}|| = 1 + 1 = 2$.

[2] (b) If \vec{u} is orthogonal to both \vec{v} and \vec{w} , then \vec{u} is orthogonal to $2\vec{v} + 3\vec{w}$.

Solution: True, since $\vec{u} \cdot (2\vec{v} + 3\vec{w}) = 2\vec{u} \cdot \vec{v} + 3\vec{u} \cdot \vec{w} = 2(0) + 3(0) = 0$.

[2] (c) If none of vectors $\vec{u}, \vec{v}, \vec{w}$ in \mathbb{R}^3 is a scalar multiple of one of the others, then the set $S = \{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent.

Solution: False. Consider the vectors [1,0,0], [0,1,0] and [1,1,0].

[2] (d) Every system of 3 linear equations in 4 unknowns has infinitely many solutions.

Solution: False. For example, if x + y + w + z = 0 and x + y + w + z = 1 are two of the linear equations, then the system has no solutions.

[2] (e) Let
$$\vec{u} = [3, 6]$$
 and $\vec{v} = [2, 4]$. Then span $(\vec{u}, \vec{v}) = \mathbb{R}^2$.

Solution: False, since they are parallel and therefore span a line.

[2] (f) Let A be a
$$2 \times 2$$
 matrix. If $B = A^2$, then $AB = BA$.

Solution: True, since $AB = A(A^2) = A^3$ and $BA = (A^2)A = A^3$.

[2] (g) A matrix of the form $\begin{bmatrix} a & 1 \\ -1 & a \end{bmatrix}$ is invertible, for all real numbers a.

Solution: True. Its determinant is $a^2 + 1 \ge 1 > 0$, so it is invertible.

[2] (h) The set $S = \{ [x, y, z] \in \mathbb{R}^3 \mid y = x^2 \}$ is a subspace of \mathbb{R}^3 .

Solution: False. For example, [1, 1, 0] is in S (since $1^2 = 1$), but 2[1, 1, 0] = [2, 2, 0] is not in S (since $2^2 \neq 2$).

- 2. Let $\vec{u} = [2, -1, 3]$ and $\vec{v} = [3, 2, 1]$.
- [3] (a) Find the angle between \vec{u} and \vec{v} .

Solution: We have

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{7}{\sqrt{14}\sqrt{14}} = \frac{7}{14} = \frac{1}{2}$$

and so $\theta = 60$ degrees.

[2] (b) Compute the projection $\operatorname{proj}_{\vec{u}}(\vec{v})$ of \vec{v} onto \vec{u} . Solution:

$$\operatorname{proj}_{\vec{u}}(\vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u} = \frac{7}{14} [2, -1, 3] = [1, -1/2, 3/2].$$

[4] 3. Let V be the plane in \mathbb{R}^3 given by 2x + y - z = 0, and let W be the line in \mathbb{R}^3 through the origin in the direction of [1, 0, 1]. Find vectors $\vec{v} \in V$ and $\vec{w} \in W$ such that $\vec{v} + \vec{w} = [1, 1, 1]$. (Hint: you know $\vec{w} = t[1, 0, 1]$ for some scalar t.)

Solution: Let $\vec{w} = t[1,0,1]$. Then $\vec{v} = [1,1,1] - t[1,0,1] = [1-t,1,1-t]$. Since \vec{v} is in the plane, we must have 2(1-t)+1-(1-t)=0. That is, -t+2=0, and so t=2. So $\vec{w} = 2[1,0,1] = [2,0,2]$ and $\vec{v} = [1,1,1] - [2,0,2] = [-1,1,-1]$.

[4] 4. (a) Find a normal vector for the equation of a plane that contains the two lines $\vec{x} = \vec{p} + s\vec{u}$ and $\vec{x} = \vec{p} + t\vec{v}$, where

 $\vec{p} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \quad \vec{u} = \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \quad \text{and} \quad \vec{v} = \begin{bmatrix} -1\\1\\1 \end{bmatrix}.$

Solution: Since the plane contains the two lines, it goes through the point \vec{p} and has \vec{u} and \vec{v} as direction vectors. (They are not parallel.)

We take the cross product of the direction vectors to find a normal vector:

$$\vec{u} \times \vec{v} = \begin{bmatrix} 1\\ -3\\ 4 \end{bmatrix}.$$

[3] (b) Find a general equation for the plane in part (a).

Solution: Using (a), we know the equation is of the form x - 3y + 4z = d. We plug in the point (1, 0, 2) to find that d = 9, so the equation is

$$x - 3y + 4z = 9.$$

[4] 5. Consider a code that uses code words in \mathbb{Z}_5^6 and has check vector $\vec{c} = [2, 1, 2, 1, 2, 1]$. Find the digit d in \mathbb{Z}_5 that makes $\vec{v} = [3, 1, 2, 3, 2, d]$ into a valid code word.

Solution: We compute

$$\vec{c} \cdot \vec{v} = 2(3) + 1(1) + 2(2) + 1(3) + 2(2) + 1(d) = 6 + 1 + 4 + 3 + 4 + d = 18 + d = 3 + d$$

in \mathbb{Z}_5 . To make this 0, we choose d = 2.

Page 4 of 7

[5] 6. Determine the currents in this electrical network.

Solution: Kirchhoff's current law at node A gives:

$$I_1 - I_2 + I_3 = 0.$$

At node B, you get the same equation. Kirchhoff's voltage law for the bottom loop gives:

$$2I_2 + 4I_3 = 8.$$

And for the top loop we get:

$$I_1 + 2I_2 = 5.$$

So we need to solve the system whose augmented matrix is:

	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
This row reduces to	$\left[\begin{array}{rrrrr} 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 \end{array}\right]$
which has solution	$I_3 = 1$ $I_2 = 4 - 2I_3 = 2$ $I_1 = I_2 - I_3 = 1$

[4] 7. Let A, B and X be invertible $n \times n$ matrices. Solve the following matrix equation for X in terms of A and B. Show your steps, and simplify your answer.

$$A^T X + (X^T A)^T = B$$

Solution:

$$A^{T}X + (X^{T}A)^{T} = B$$

$$\implies A^{T}X + A^{T}X = B$$

$$\implies 2A^{T}X = B$$

$$\implies X = \frac{1}{2}(A^{T})^{-1}B$$

8. Let
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \\ -2 & 2 & 3 \end{bmatrix}$$
.

[4] (a) Determine whether A is invertible, and if so, find A^{-1} , showing your work. Solution: Row reducing [A|I] leads to

Γ	1	0	0	1/12	1/8	-1/6]
	0	1	0	-2/3	1/2	1/3
L	0	0	1	1/2	-1/4	0

and so A is invertible with inverse

$$\left[\begin{array}{rrrr} 1/12 & 1/8 & -1/6 \\ -2/3 & 1/2 & 1/3 \\ 1/2 & -1/4 & 0 \end{array}\right]$$

[3] (b) Using your answer to part (a), determine whether the system $A\vec{x} = \vec{0}$ has a unique solution.

Solution: By the fundamental theorem of invertible matrices, it does have a unique solution since A is invertible.

Alternatively, by the above work, we see that there will be no free variables.

9. Let $\mathbf{1}$

$$A = \begin{bmatrix} 1 & 3 & 0 & 5 & 0 & 4 \\ 2 & 6 & 1 & 8 & 0 & 5 \\ 2 & 6 & 2 & 6 & 1 & 9 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & 3 & 0 & 5 & 0 & 4 \\ 0 & 0 & 1 & -2 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}.$$

Given that R is the reduced row-echelon form of A, compute each of the following. Explain briefly.

[1] (a) $\operatorname{rank}(A)$.

Solution: The rank is 3, since the row echelon form R has three non-zero rows.

[2] (b) A basis for row(A).

Solution: A basis for the row space of A is given by the non-zero rows of R:

[1, 3, 0, 5, 0, 4], [0, 0, 1, -2, 0, -3] and [0, 0, 0, 0, 1, 7]

[2] (c) A basis for col(A).

Solution: A basis for the column space of A is given by the columns of A that correspond to columns of R with leading 1's:

1		$\begin{bmatrix} 0 \end{bmatrix}$		[0]
2	,	1	and	0
2		2		1

[3] (d) A basis for $\operatorname{null}(A)$.

Solution: From the matrix R we get the equations

$$x_1 + 3x_2 + 5x_4 + 4x_6 = 0$$
, $x_3 - 2x_4 - 3x_6 = 0$ and $x_5 + 7x_6 = 0$

The variables $x_2 = r$, $x_4 = s$ and $x_6 = t$ are free, and the equations above give formulas for x_1, x_3 and x_5 , so we find the general solution to be

$$\vec{x} = r \begin{bmatrix} -3\\1\\0\\0\\0\\0\\0 \end{bmatrix} + s \begin{bmatrix} -5\\0\\2\\1\\0\\0 \end{bmatrix} + t \begin{bmatrix} -4\\0\\3\\0\\-7\\1 \end{bmatrix},$$

so a basis for the null space is given by the three vectors shown.

(a) Assume that A is invertible. Show that $A^T A$ is invertible by finding a formula for $(A^T A)^{-1}$ [2]in terms of A^{-1} .

> **Solution:** Recall that, if A is invertible, then $(A^T)^{-1} = (A^{-1})^T$. Also, if A and B are both invertible of the same size, then $(AB)^{-1} = B^{-1}A^{-1}$. Thus, $(A^TA)^{-1} = A^{-1}(A^{-1})^T$ exists.

(b) Now assume that $A^T A$ is invertible. Show that A is invertible by showing that $(A^T A)^{-1} A^T$ [2]is an inverse to A.

> **Solution:** Since A is square, it is enough to show that $(A^T A)^{-1} A^T$ is a one-sided inverse to A, and this is easy to check:

$$((A^T A)^{-1} A^T) A = (A^T A)^{-1} (A^T A) = I.$$

Note that it is not valid to write $(A^T A)^{-1} = A^{-1} (A^T)^{-1}$ until we show that A is invertible.

[5] 11. Are the vectors
$$\vec{u}_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} 0\\2\\3 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 3\\8\\5 \end{bmatrix}$, and $\vec{u}_4 = \begin{bmatrix} -1\\0\\4 \end{bmatrix}$ linearly dependent? If so, find scalars c_1, c_2, c_3 and c_4 such that $c_1\vec{u}_1 + c_2\vec{u}_2 + c_3\vec{u}_3 + c_4\vec{u}_4 = \vec{0}$.

Solution: A collection of four vectors in \mathbb{R}^3 is always linearly dependent. To find the dependency relationship, we have to solve the system

	$\begin{bmatrix} 1 & 0 & 3 & -1 \\ 2 & 2 & 8 & 0 \\ 1 & 3 & 5 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
Row reduction of	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
leads to	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
which has general solution	

which has general solution

$$c_1 = -5t, c_2 = -3t, c_3 = 2t, c_4 = t.$$

Picking t = 1 gives a specific relationship

$$-5\vec{u}_1 - 3\vec{u}_2 + 2\vec{u}_3 + \vec{u}_4 = \vec{0}.$$