THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

MATHEMATICS 1600B MIDTERM EXAMINATION 31 January 2013 7:00–8:30 PM

- 1. For each of the following statements, circle \mathbf{T} if the statement is always true and \mathbf{F} if it can be false. Give a one-sentence justification for your answer.
 - (a) (2 marks) If two non-zero vectors are parallel, then the angle between them is 0 degrees.

Solution: This is FALSE. The angle can also be 180 degrees, for example if \mathbf{v} is non-zero and $\mathbf{w} = -\mathbf{v}$.

(b) (2 marks) For any two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^3 , $\|\mathbf{u} \times \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|$.

Solution: This is TRUE. We have $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta \le \|\mathbf{u}\| \|\mathbf{v}\|$ because for the angle θ between \mathbf{u} and \mathbf{v} one has $\sin \theta \le 1$.

(c) (2 marks) Any vector in the plane is a linear combination of the standard unit vectors \mathbf{e}_1 and \mathbf{e}_2 .

Solution: This is TRUE because

$$\begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x \mathbf{e}_1 + y \mathbf{e}_2.$$

2. (2 marks) Let $\mathbf{u} = [3, 2, 1]$ and $\mathbf{v} = [1, 3, 2]$ be in $(\mathbb{Z}_5)^3$. Find all scalars b in \mathbb{Z}_5 such that $(\mathbf{u} + b\mathbf{v}) \cdot (b\mathbf{u} + \mathbf{v}) = 1$. (Read again the last instruction on the front page!)

Solution:

$$1 = (\mathbf{u} + b\mathbf{v}) \cdot (b\mathbf{u} + \mathbf{v}) = b\mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + b^2\mathbf{v} \cdot \mathbf{u} + b\mathbf{v} \cdot \mathbf{v}$$
$$= b(\mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}) + (b^2 + 1)\mathbf{u} \cdot \mathbf{v} = 28b + (b^2 + 1) \cdot 11 = b^2 + 3b + 1.$$

Hence $b^2 + 3b = b(b+3) = 0$, which means b = 0 or b = -3 = 2.

3. Let $\mathbf{v} = [\sqrt{3}, 0, 1]$ and $\mathbf{w} = [-1, \sqrt{2}, 1]$.

Solution:

(a) (2 marks) Compute the length of $\mathbf{v} + \mathbf{w}$.

Solution:	
	$\mathbf{v} + \mathbf{w} = \begin{bmatrix} \sqrt{3} - 1 \\ \sqrt{2} \\ 2 \end{bmatrix},$
	$\ \mathbf{v} + \mathbf{w}\ ^2 = (\sqrt{3} - 1)^2 + 2 + 4 = 10 - 2\sqrt{3},$
	$\left\ \mathbf{v} + \mathbf{w}\right\ = \sqrt{10 - 2\sqrt{3}}.$

(b) (1 mark) Find a unit vector pointing in the same direction as **w**.

$$\mathbf{u} = \frac{1}{\|\mathbf{w}\|} \, \mathbf{w} = \frac{1}{2} \, \mathbf{w} = \begin{bmatrix} -1/2\\ 1/\sqrt{2}\\ 1/2 \end{bmatrix}$$

(c) (2 marks) Find all unit vectors \mathbf{x} in the *xy*-plane that make an angle of 30 degrees with \mathbf{v} .

Solution: Let $\mathbf{x} = [x, y, 0]$ be a unit vector in the *xy*-plane. Since the angle between \mathbf{x} and \mathbf{v} equals 30 degrees, we have

$$\cos 30^\circ = \frac{1}{2}\sqrt{3} = \frac{\mathbf{x} \cdot \mathbf{v}}{\|\mathbf{x}\| \|\mathbf{v}\|} = \frac{1}{2}\sqrt{3}x$$

or x = 1. Since **x** is a unit vector, this implies y = 0, so that $\mathbf{x} = [1, 0, 0]$ is the only solution.

- 4. (2 marks) Give an example of a valid UPC code \mathbf{x} with the following two properties:
 - If one reads the UPC code backwards, one gets again a valid UPC code.
 - The 'backwards' code is not the same as the original code. (That is, codes of the form $\mathbf{x} = [0\,1\,2\,3\,4\,5\,5\,4\,3\,2\,1\,0]$ are not permitted.)

(Recall that the check vector for UPC is $\mathbf{c} = [31313131313131]$.)

Solution: Let $\mathbf{x} = [x_1 x_2 \dots x_{11} x_{12}]$. The first condition means that $3x_1 + x_2 + 3x_3 + x_4 + \dots + 3x_{11} + x_{12} = 0,$ $x_1 + 3x_2 + x_3 + 3x_4 + \dots + x_{11} + 3x_{12} = 0.$ Subtracting three times the second equation from the first we get $-8x_2 - 8x_4 - \dots - 8x_{12} = 0,$ that is, $2x_2 + 2x_4 + \dots + 2x_{12} = 0.$ If we set $x_2 = x_4 = \dots = x_{12} = 0$, the second equation becomes $x_1 + x_3 + \dots + x_{11} = 0.$ Choosing $x_1 = 1$ and $x_3 = -1 = 9$ and $x_5 = x_7 = x_9 = x_{11} = 0$ therefore is one possible solution to the problem,

$$\mathbf{x} = [1\,0\,9\,0\,0\,0\,0\,0\,0\,0\,0\,0].$$

- 5. Let A(2,2,4), B(-1,0,5), C(3,4,3) be three points in \mathbb{R}^3 .
 - (a) (2 marks) Write a vector form of the equation of the plane containing the triangle ΔABC .

Solution: The vectors $\mathbf{u} = \overrightarrow{AB} = B - A = [-3, -2, 1]$ and $\mathbf{v} = \overrightarrow{AC} = C - A = [1, 2, -1]$ are parallel to the plane, but not on the same line. Hence a vector form is $\begin{bmatrix} 2 \\ -3 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

$$\mathbf{x} = A + s \,\mathbf{u} + t \,\mathbf{v} = \begin{bmatrix} 2\\2\\4 \end{bmatrix} + s \begin{bmatrix} -3\\-2\\1 \end{bmatrix} + t \begin{bmatrix} 1\\2\\-1 \end{bmatrix}.$$

(b) (2 marks) Give the normal form of the equation of the plane containing the triangle ΔABC .

Solution: A normal vector of the plane is

$$\mathbf{n} = \mathbf{u} \times \mathbf{v} = \begin{bmatrix} -3\\ -2\\ 1 \end{bmatrix} \times \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} = \begin{bmatrix} 0\\ -2\\ -4 \end{bmatrix},$$

hence a normal form of the equation is

$$\mathbf{n} \cdot \mathbf{x} = \mathbf{n} \cdot A = -20.$$

(c) (2 marks) What is the area of the triangle ΔABC ?

Solution: The area is given by

$$\frac{1}{2} \|\mathbf{u} \times \mathbf{v}\| = \frac{1}{2} \|\mathbf{n}\| = \frac{\sqrt{20}}{2} = \sqrt{5}.$$

(d) (1 mark) Find a point in the plane from part (a) that lies *inside* (not including the edges) of the triangle ΔABC .

Solution: Using the vector form of the plane from part (a), we may choose any point $\mathbf{x} = A + s\mathbf{u} + t\mathbf{v}$ with s and t small enough so that the $s\mathbf{u} + t\mathbf{v}$ lies in the triangle determined by \mathbf{u} and \mathbf{v} (precisely, any s, t with s + t < 1 will do). For example, choosing s = t = 1/3, we see that $\mathbf{x} = (4/3, 2, 4)$ lies inside the triangle. (This particular point

$$Q = \frac{1}{3}(A + B + C) = (4/3, 2, 4).$$

is known as the barycentre or centroid. See the "exploration" on page 32 of the book.)

6. Consider the system of linear equations

$$\begin{array}{rcl}
x + 3y + 2z &= 1 \\
-z + 2w &= 0 \\
3x + 5y - z &= 5 \\
2x + 2y - 2z - 2w &= 4
\end{array}$$

(a) (1 mark) Write down the augmented matrix of this linear system.

Solution:	
	$\begin{bmatrix} 1 & 3 & 2 & 0 & 1 \end{bmatrix}$
	0 0 -1 2 0
	$\begin{vmatrix} 3 & 5 & -1 & 0 & 5 \end{vmatrix}$
	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

(b) (3 marks) Compute the reduced row-echelon form of the augmented matrix above. Indicate all elementary row operations that you are performing.

Solution:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\xrightarrow{R_2 \leftrightarrow R_3 \leftrightarrow R_4} \begin{bmatrix} 1 & 3 & 2 & 0 & & 1 \\ 0 & -4 & -7 & 0 & & 2 \\ 0 & 0 & 1 & -2 & & 0 \\ 0 & 0 & -1 & 2 & & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_3} \begin{bmatrix} 1 & 3 & 0 & 4 & & 1 \\ 0 & -4 & 0 & -14 & & 2 \\ 0 & 0 & 1 & -2 & & 0 \\ 0 & 0 & 0 & 0 & & 0 \end{bmatrix}$
$\xrightarrow{R_2/(-4)} \begin{bmatrix} 1 & 3 & 0 & 4 & & 1 \\ 0 & 1 & 0 & 7/2 & -1/2 \\ 0 & 0 & 1 & -2 & & 0 \\ 0 & 0 & 0 & 0 & & 0 \end{bmatrix} \xrightarrow{R_1 - 3R_2} \begin{bmatrix} 1 & 0 & 0 & -13/2 & & 5/2 \\ 0 & 1 & 0 & 7/2 & -1/2 \\ 0 & 0 & 1 & -2 & & 0 \\ 0 & 0 & 0 & 0 & & 0 \end{bmatrix}$

(c) (2 marks) Use the result of the previous part to find all solutions of the linear system.

Solution: We have one parameter t = w and

$$\begin{aligned} x &- \frac{13}{2} w &= \frac{5}{2}, \\ y &+ \frac{7}{2} w &= -\frac{1}{2}, \\ z &- 2 w &= 0, \end{aligned}$$

hence

- $$\begin{split} x &= 5/2 + 13/2 \, t, \\ y &= -1/2 7/2 \, t, \\ z &= 2t, \\ w &= t. \end{split}$$
- 7. Let \$\mathcal{P}\$ be the plane through the point \$A(2,-1,-1)\$ with normal vector \$\mathbf{n} = [2,2,-1]\$.
 (a) (2 marks) Compute parametric equations of the plane \$\mathcal{P}\$.

Solution: We need two vectors parallel to \mathcal{P} , but not lying on a common line. We choose $\mathbf{u} = [1, 0, 2]$ and $\mathbf{v} = [0, 1, 2]$. Hence a vector equation for \mathcal{P} is

 $\mathbf{x} = A + s \mathbf{u} + t \mathbf{v}$, and parametric equations are x = 2 + s, y = -1 + t, z = -1 + 2s + 2t.

(b) (2 marks) Compute the distance from \mathcal{P} to the origin.

Solution: The distance d from \mathcal{P} to the origin is the length of the projection of $\overrightarrow{AO} = [-2, 1, 1]$ onto **n**. We have

$$\operatorname{proj}_{\mathbf{n}} \overrightarrow{AO} = \frac{\overrightarrow{AO} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n} = \frac{-3}{9} \mathbf{n} = -\frac{1}{3} \mathbf{n}.$$

Since **n** has length 3, the distance is d = 1.

(c) (1 mark) Find a plane \mathcal{P}' that is parallel to \mathcal{P} and has distance 2 from \mathcal{P} .

Solution: The normal vector **n** has length 3, so that the point $B = A \pm 2/3$ **n** has distance 2 from \mathcal{P} . This is also the distance between \mathcal{P} and the plane \mathcal{P}' through B parallel to \mathcal{P} . Its normal form is

$$\mathbf{x} \cdot \mathbf{n} = B \cdot \mathbf{n} = (A \pm 2/3 \, \mathbf{n}) \cdot \mathbf{n} = A \cdot \mathbf{n} \pm 2/3 \, \mathbf{n} \cdot \mathbf{n} = 3 \pm 6.$$

Hence one solution is $\mathbf{x} \cdot \mathbf{n} = 9$ and the other one is $\mathbf{x} \cdot \mathbf{n} = -3$.