- 1. For each of the following statements, circle T if the statement is always true and \bf{F} if it can be false. Give a one-sentence justification for your answer.
- [2] (a) The set $S = \{ [x, y] \in \mathbb{R}^2 \mid x + y \ge -1 \}$ is a subspace of \mathbb{R}^2 .

Solution: False. [1, 1] is in S, but $(-1)[1, 1] = [-1, -1]$ is not in S.

[2] (b) Let A be a square matrix. If the column vectors of A are linearly independent, then the row vectors of A are linearly independent too.

Solution: True, by the fundamental theorem of invertible matrices.

[2] (c) Let M be a 3×2 matrix. Then the column vectors of M are linearly dependent.

Solution: False. For example, the columns of

$$
M = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right]
$$

are linearly independent.

(d) If A and B are both symmetric $n \times n$ matrices and c and d are any scalars, then $cA + dB$ is also symmetric.

Solution: True. Symmetric means $A^T = A$ and $B^T = B$. Using properties of transpose,

$$
(cA + dB)^{T} = (cA)^{T} + (dB)^{T} = c(A^{T}) + d(B^{T}) = cA + dB
$$

so $cA + dB$ is symmetric too.

[2] (e) The dimension of span $\{$ $\lceil 1 \rceil$ 0 1 , $\begin{bmatrix} 0 \end{bmatrix}$ 1 1 , $\lceil 1 \rceil$ 1 1 } is 3.

> Solution: False. The third vector is the sum of the first two, so a basis for this span has two elements. Thus the dimension is two, not three.

[3] 2. Let A, B and X be invertible $n \times n$ matrices. Solve the following matrix equation for X in terms of A and B. Show your steps, and simplify your answer.

$$
A(X^T + B) = (B + A)B
$$

Solution:

$$
A(X^{T} + B) = (B + A)B
$$

\n
$$
\implies X^{T} + B = A^{-1}(B + A)B = A^{-1}B^{2} + B
$$

\n
$$
\implies X^{T} = A^{-1}B^{2}
$$

\n
$$
\implies X = (A^{-1}B^{2})^{T} = (B^{2})^{T}(A^{-1})^{T} = (B^{T})^{2}(A^{T})^{-1}
$$

Any of the three forms on the last line is correct.

[3] 3. Find the inverse of the matrix

$$
A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 3 \end{bmatrix}
$$

Solution: We row reduce $[A | I]$:

$$
\begin{bmatrix}\n1 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 2 & 0 & 1 & 0 \\
2 & 2 & 3 & 0 & 0 & 1\n\end{bmatrix}\n\xrightarrow[R_3 - 2R_1]{R_2 - R_1}\n\begin{bmatrix}\n1 & 1 & 2 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & -2 & 0 & 1\n\end{bmatrix}
$$
\n
$$
\xrightarrow[R_1 + R_2]{R_1 + R_2}\n\begin{bmatrix}\n1 & 0 & 2 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & -2 & 0 & 1\n\end{bmatrix}\n\xrightarrow[R_1 + 2R_3]{R_1 + 2R_3}\n\begin{bmatrix}\n1 & 0 & 0 & -4 & 1 & 2 \\
0 & -1 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & -2 & 0 & 1\n\end{bmatrix}
$$
\n
$$
\xrightarrow[\text{--}1, R_3]{-1 \cdot R_2}\n\begin{bmatrix}\n1 & 0 & 0 & -4 & 1 & 2 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 2 & 0 & -1\n\end{bmatrix}\n\quad \checkmark
$$

We find

$$
A^{-1} = \begin{bmatrix} -4 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 0 & -1 \end{bmatrix}
$$

Don't forget to check your answer by multiplying!

4. Let

$$
A = \begin{bmatrix} 0 & 1 & -4 & -1 & 1 \\ 0 & 3 & -12 & 0 & 9 \\ 0 & 2 & -8 & 2 & 10 \end{bmatrix} \text{ and } R = \begin{bmatrix} 0 & 1 & -4 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$

Given that R is the reduced row-echelon form of A, compute each of the following. Explain briefly.

[1] (a) rank (A) .

Solution: The rank is 2, since the row echelon form R has two non-zero rows.

[1] (b) nullity(A).

Solution: rank (A) + nullity (A) = 5, so nullity (A) = 5 – 2 = 3.

[2] (c) A basis for row(A).

Solution: A basis for the row space of A is given by the non-zero rows of R :

 $[0, 1, -4, 0, 3]$ and $[0, 0, 0, 1, 2]$

[2] (d) A basis for $col(A)$.

Solution: A basis for the column space of A is given by the columns of A that correspond to columns of R with leading 1's:

$$
\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}
$$

[3] (e) A basis for $null(A)$.

Solution: From the matrix R we get the equations

$$
x_2 - 4x_3 + 3x_5 = 0 \quad \text{and} \quad x_4 + 2x_5 = 0
$$

The variables $x_1 = r$, $x_3 = s$ and $x_5 = t$ are free, and the equations above give formulas for x_2 and x_4 , so we find the general solution to be

$$
\begin{bmatrix} r \\ 4s - 3t \\ s \\ -2t \\ t \end{bmatrix} = r \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 4 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ -3 \\ 0 \\ -2 \\ 1 \end{bmatrix}
$$

so a basis for the null space is given by the three vectors shown.

[3] 5. Let A be a 2×4 matrix. What are the possible values of the rank and nullity of A? Explain.

Solution: Since A has only 2 rows, the rank can be at most 2. So the possible values for the rank are 0, 1 and 2. We also know that $rank(A) + nullity(A) = 4$, so the nullity of A can be 4, 3 or 2.

6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that

$$
T(\vec{e}_1) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$
 and $T(\vec{e}_2) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

[2] (a) Find the standard matrix [T] of T.

Solution:
$$
[T] = [T(\vec{e}_1) | T(\vec{e}_2)] = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}
$$

[3] (b) Determine whether T is invertible. If so, find the standard matrix of T^{-1} .

Solution: The determinant of [T] is $(1)(4) - (2)(3) = -2$, so the matrix [T] is invertible. Therefore, the linear transformation T is invertible. The standard matrix of T^{-1} is the inverse of $[T]$, which is

$$
\frac{1}{-2}\left[\begin{array}{rr}4 & -3\\-2 & 1\end{array}\right]
$$

[2] (c) Find the standard matrix of $T^2 = T \circ T$. Solution:

$$
[T2] = [T]2 = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 15 \\ 10 & 22 \end{bmatrix}
$$

7. Consider the following Markov process: $\qquad 0$

$$
0.3 \left(\underbrace{1}_{0.5} \right)^{0.7} \left(2 \right)^{1} 0.5
$$

 $[2]$ (a) Write down the transition matrix P for this Markov process. **Solution:** The ij entry is the probability of going from state j to state i :

$$
P = \left[\begin{array}{cc} 0.3 & 0.5 \\ 0.7 & 0.5 \end{array} \right]
$$

 $[3]$ (b) Find a steady state probability vector for P. **Solution:** We solve the system $(I - P)\vec{x} = \vec{0}$.

$$
[I - P | 0] = \begin{bmatrix} 0.7 & -0.5 & 0 \\ -0.7 & 0.5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0.7 & -0.5 & 0 \\ 0.0 & 0.0 & 0 \end{bmatrix}
$$

so $0.7x_1 = 0.5x_2$. $x_2 = t$ is free, and $x_1 = \frac{5}{7}$ $\frac{5}{7}x_2 = \frac{5}{7}$ $\frac{5}{7}t$, so we get $\begin{bmatrix} \frac{5}{7} \\ 1 \end{bmatrix}$ $\frac{5}{7}t$ t 1 . For this to be a probability vector, we need $\frac{5}{7}t + t = \frac{12}{7}$ $t^2\frac{1}{7}t = 1$, so $t = 7/12$ and $x_1 = 5/12$. So the solution is $\left\lceil \frac{5}{12} \right\rceil$ 7 12 1 .