vector animation

Math 1600 Lecture 1, Section 002, 6 Sep 2024

$ \newcommand{\bdmat}[1]{\left|\begin{array}{#1}} \newcommand{\edmat}{\end{array}\right|} \newcommand{\bmat}[1]{\left[\begin{array}{#1}} \newcommand{\emat}{\end{array}\right]} \newcommand{\coll}[2]{\bmat{r} #1 \\ #2 \emat} \newcommand{\ccoll}[2]{\bmat{c} #1 \\ #2 \emat} \newcommand{\colll}[3]{\bmat{r} #1 \\ #2 \\ #3 \emat} \newcommand{\ccolll}[3]{\bmat{c} #1 \\ #2 \\ #3 \emat} \newcommand{\collll}[4]{\bmat{r} #1 \\ #2 \\ #3 \\ #4 \emat} \newcommand{\ccollll}[4]{\bmat{c} #1 \\ #2 \\ #3 \\ #4 \emat} \newcommand{\colllll}[5]{\bmat{r} #1 \\ #2 \\ #3 \\ #4 \\ #5 \emat} \newcommand{\ccolllll}[5]{\bmat{c} #1 \\ #2 \\ #3 \\ #4 \\ #5 \emat} \newcommand{\red}[1]{{\color{red}#1}} \newcommand{\lra}[1]{\mbox{$\xrightarrow{#1}$}} \newcommand{\rank}{\textrm{rank}} \newcommand{\row}{\textrm{row}} \newcommand{\col}{\textrm{col}} \newcommand{\null}{\textrm{null}} \newcommand{\nullity}{\textrm{nullity}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \renewcommand{\Arg}{\operatorname{Arg}} \renewcommand{\arg}{\operatorname{arg}} \newcommand{\adj}{\textrm{adj}} \newcommand{\mystack}[2]{\genfrac{}{}{0}{0}{#1}{#2}} \newcommand{\mystackthree}[3]{\mystack{\mystack{#1}{#2}}{#3}} \newcommand{\qimplies}{\quad\implies\quad} \newcommand{\qtext}[1]{\quad\text{#1}\quad} \newcommand{\qqtext}[1]{\qquad\text{#1}\qquad} \newcommand{\smalltext}[1]{{\small\text{#1}}} \newcommand{\svec}[1]{\,\vec{#1}} \newcommand{\querytext}[1]{\toggle{\text{?}\vphantom{\text{#1}}}{\text{#1}}\endtoggle} \newcommand{\query}[1]{\toggle{\text{?}\vphantom{#1}}{#1}\endtoggle} \newcommand{\smallquery}[1]{\toggle{\text{?}}{#1}\endtoggle} \newcommand{\bv}{\mathbf{v}} $

Getting help with course material:

Start of course material

Section 1.1: The Geometry and Algebra of Vectors

scalar vector
real valued quantity    magnitude and direction
speed: 10 m/s velocity: 10 m/s north $\quad\qquad\begin{CD}{} \\ @AA{10 \text{ m/s}}A \\ {} \end{CD}$      
temperature: 10 C force: 10 Newtons up $\quad\qquad\begin{CD}{} \\ @AA{10 \text{ N}}A \\ {\smash{\blacksquare}} \end{CD}$
distance: 10 m displacement: 10 m east $\quad\lra{\ 10 \text{ m }}\Rule{0pt}{20pt}{0pt}$

Vectors in the plane

If $A$ and $B$ are points in the plane, then $\vec{AB}$ denotes the vector from $A$ to $B$. The point $A$ is called the initial point and $B$ is called the terminal point. (Sketch on board.)

The components of a vector are its horizontal and vertical displacements. For example, if $A = (2, 4)$ and $B = (5,6)$, then the components of $\vec{AB}$ are $5-2=3$ and $6-4=2$. We write $\vec{AB} = [3,2] = \coll 3 2$.

The overall position of a vector does not matter. Two vectors are considered equal if they have the same length and direction, or equivalently if their corresponding components are equal. For example, if $C = (3,2)$ and $O = (0,0)$ is the origin, then $\vec{AB} = \vec{OC}$ since both have components $[3,2]$.

But note that $[2,3]$ is not the same vector, as the order of the components is important.

We write $\R^2$ for the set of all vectors with two real numbers as components. So $[3,2]$, $[-\pi, 7/2]$ and $\vec 0 = [0,0]$ are all vectors in $\R^2$.

New vectors from old

Vector addition: triangle rule: To add $\vu$ and $\vv$, translate them so the initial point of $\vv$ equals the terminal point of $\vu$, and draw an arrow from the initial point of $\vu$ to the terminal point of $\vv$:


[Drag midpoint to translate vectors, or endpoints to change vectors. Press "p" to toggle parallelogram rule and "r" to resize canvas.]

Paralleogram rule: Explain with the applet.

Algebraically, to add vectors, you add the corresponding components, so for $\vu = [u_1, u_2]$ and $\vv = [v_1, v_2]$ we have \[ \vu + \vv := [u_1+v_1, u_2+v_2] \]

Scalar multiplication: for $c \in \R$ and $\vv = [v_1, v_2]$, we define \[ c \vv = c [ v_1, v_2 ] := [c v_1, c v_2 ] . \] Geometrically, this scales the length by the absolute value $|c|$ of $c$, and reverses the direction if $c < 0$. (Sketch on board.) We say that $\vv$ and $\vw$ are parallel if $\vv = c \vw$ or $\vw = c \vv$ for some $c \in \R$. (Note that $c = 0$ and $c < 0$ are permitted.)

We refer to real numbers as scalars.

Negative: We define $-\vv := (-1)\vv = [-v_1, -v_2]$.

Subtraction: We define $\vu - \vv := \vu + (-\vv) = [u_1 - v_1, u_2 - v_2]$.

Zero vector: We define $\vec{0} = [0, 0]$.

Vectors in $\R^3$

In 3-space, a vector has three components, giving its displacements parallel to the $x$, $y$ and $z$ axes: $\vv = [v_1, v_2, v_3]$. The collection of such vectors is denoted $\R^3$. All of the operations we have discussed extend to $\R^3$. The text gives some geometrical illustrations.

Vectors in $\R^n$

It is important for applications to be able to deal with vectors with more than three components. We write $\R^n$ for the set of ordered $n$-tuples of real numbers. For example, $[1,0,4,3,2]$ is a vector in $\R^5$.

While we can't visualize such vectors geometrically, the algebraic definitions extend immediately to this case:

If $\vu = [u_1, u_2, \ldots, u_n]$ and $\vv = [v_1, v_2, \ldots, v_n]$ and $c \in \R$, then \[ \vu + \vv := [u_1+v_1,\,\, u_2+v_2,\, \ldots,\,\, u_n+v_n] \] E.g. $[3, 2, 1, 0] + [1, 0, -1, 4] = [4, 2, 0, 4]$.

\[ c \vu = c [u_1, \ldots, u_n] := [c u_1,\, \ldots,\, c u_n] \] E.g. $2 [ 1 , -2, 3, -4, 5] = [2, -4, 6, -8, 10]$.

\[ - \vu := (-1) \vu = [-u_1, -u_2, \ldots, -u_n] \] E.g. $-[1,-2,3,-4,5] = [-1, 2, -3, 4, -5]$.

\[ \vu - \vv := \vu + (-\vv) = [u_1-v_1,\,\, \ldots,\,\, u_n-v_n] \] E.g. $[1,2,3,4,5] - [1,0,2,1,1] = [0, 2, 1, 3, 4]$.

\[ \vec{0} := [0, 0, ..., 0] \]