Math 1600B Lecture 10, Section 2, 27 Jan 2014

Announcements:

Continue **reading** Section 2.3 for next class. Work through recommended homework questions.

Quiz 3 is this week, and will focus on Section 2.2 and the first half of Section 2.3 (linear combinations and spanning, but not linear independence and dependence).

Office hour: today, 1:30-2:30 and Wednesday, 10:30-11:15, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Here is an applet for practicing row reduction.

We aren't covering solving systems over \mathbb{Z}_p .

Review of Section 2.2, Lecture 9:

Associated to a system of linear equations is an **augmented matrix** $[A \mid \vec{b}\,]$. We call A the **coefficient matrix**.

Performing the following **elementary row operations** on the augmented matrix doesn't change the solution set:

- 1. Exchange two rows.
- 2. Multiply a row by a **nonzero** constant.
- 3. Add a multiple of one row to another.

Definition: A matrix is in **row echelon form (REF)** if it satisfies:

- 1. Any rows that are entirely zero are at the bottom.
- 2. In each nonzero row, the first nonzero entry (called the **leading entry**) is further to the right than any leading entries above it.

Definition: A matrix is in reduced row echelon form (RREF) if:

- 1. It is in row echelon form.
- 2. The leading entry in each nonzero row is a 1 (called a **leading 1**).
- 3. Each column containing a leading 1 is zero everywhere else.

Example: Are the following systems in reduced row echelon form (RREF) and/or row

echelon form (REF)?

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 3 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 3 & 0 & 4 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 6 & 0 & 1 \end{bmatrix}$$
REF
REF
REF REF REF REF REF neither

We can always use the elementary row operations to get a matrix into REF and RREF:

Row reduction steps: (This technique is *crucial* for the whole course.)

- a. Find the leftmost column that is not all zeros.
- b. If the top entry is zero, exchange rows to make it nonzero.
- c. It may be convenient to scale this row to make the leading entry into a 1, or to exchange rows to get a 1 here. **For RREF, it is almost always best to do this now.**
- d. Use the leading entry to create zeros below it, and above it for RREF.
- e. Cover up the row containing the leading entry, and repeat starting from step (a).

Note: Row echelon form is not unique, but reduced row echelon form is.

Gaussian elimination: This means to do row reduction on the augmented matrix until you get to row echelon form, and then use back substitution to find the solutions.

Gauss-Jordan elimination: This means to do row reduction on the augmented matrix until you get to **reduced** row echelon form, and then use back substitution to find the solutions.

Back substitution: We call the variables corresponding to a column with a leading entry the **leading variables**, and the remaining variables the **free variables**. We solve for the leading variables in terms of the free variables, and assign parameters to the free variables.

Definition: For any matrix A, the **rank** of A is the number of nonzero rows in its row echelon form. It is written $\operatorname{rank}(A)$. (We'll see later that this is the same for all row echelon forms of A.)

Note: The number of leading variables equals the rank of the coefficient matrix.

Theorem 2.2: Let A be the coefficient matrix of a linear system with n variables. If the system is consistent, then

number of free variables = n - rank(A).

When there are 0 free variables, we have a **unique** solution.

When there are 1 or more free variables, we have **infinitely many** solutions.

Consistency: You can tell whether the system is consistent or inconsistent from the row echelon form of the augmented matrix:

- 1. If one of the rows is zero except for the last entry, then the system is **inconsistent**.
- 2. If this doesn't happen, then the system is **consistent**, and Theorem 2.2 applies.

Homogeneous Systems

Definition: A system of linear equations is **homogeneous** if the constant term in each equation is zero.

Theorem 2.3: A homogeneous system $[A \mid \vec{0}]$ is always consistent. Moreover, if there are m equations and n variables and m < n, then the system has infinitely many solutions.

Note: If $m \ge n$ the system may have infinitely many solutions or it may have only the zero solution.

New material: Section 2.3: Spanning Sets and Linear Independence

Linear combinations

Recall: A vector \vec{v} is a **linear combination** of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ if there exist scalars c_1, c_2, \dots, c_k (called coefficients) such that

$$c_1\vec{v}_1+\cdots+c_k\vec{v}_k=\vec{v}.$$

Example: Is
$$\begin{bmatrix} 4 \\ 8 \\ 6 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$?

That is, can we find scalars \boldsymbol{x} and \boldsymbol{y} such that

$$xegin{bmatrix} 4 \ 5 \ 6 \end{bmatrix} + yegin{bmatrix} 2 \ 1 \ 3 \end{bmatrix} = egin{bmatrix} 4 \ 8 \ 6 \end{bmatrix}?$$

Expanding this into components, this becomes a linear system

$$4x + 2y = 4$$
$$5x + y = 8$$

$$6x + 3y = 6$$

and we **already know** how to determine whether this system is consistent: use **row** reduction!

The augmented matrix is

$$\begin{bmatrix} 4 & 2 & | & 4 \\ 5 & 1 & | & 8 \\ 6 & 3 & | & 6 \end{bmatrix} \Leftrightarrow \text{Note that the vectors appear as the columns here.}$$

This has row echelon form (work omitted)

$$\left[\begin{array}{cc|c} 1 & 1/2 & 1 \\ 0 & -3 & 6 \\ 0 & 0 & 0 \end{array}\right].$$

From this, we can already see that the system is consistent, so the answer is YES.

If we want to find x and y, we can use back substitution (maybe first going to RREF), and we find that x=2 and y=-2 is the unique solution. (Do this at home.)

Example: Is
$$\begin{bmatrix} 4 \\ 8 \\ 8 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$?

Solution: The augmented matrix

$$\left[\begin{array}{cc|c}
4 & 2 & 4 \\
5 & 1 & 8 \\
6 & 3 & 8
\end{array}\right]$$

has row echelon form

$$\left[\begin{array}{cc|c} 1 & 1/2 & 1 \\ 0 & -3 & 6 \\ 0 & 0 & 2 \end{array}\right]$$

and so the system is inconsistent and the answer is NO.

Theorem 2.4: A system with augmented matrix $[A \mid \vec{b}\,]$ is consistent if and only if \vec{b} is

a linear combination of the columns of A.

This gives a **different** geometrical way to understand the solutions to a system. For example, consider the following system from Lecture 7:

$$x + y = 2$$
$$-x + y = 4$$

We already know that we can interpret this as finding the point of intersection of two lines in \mathbb{R}^2 , and so in this case we get a unique solution (x = -1, y = 3).

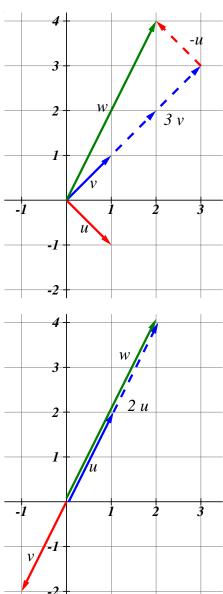
But we can also interpret this as writing $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, which has a different geometric interpretation.

$$x+y=2 \ -x+y=4$$

$$xegin{bmatrix}1\\-1\end{bmatrix}+yegin{bmatrix}1\\1\end{bmatrix}=egin{bmatrix}2\\4\end{bmatrix}$$
 $x=-1,\quad y=3$

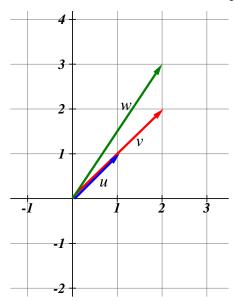
Update figure

$$x-y=2 \ 2x-2y=4$$
 $xigg[1\ 2igg]+yigg[-1\ -2igg]=igg[2\ 4igg]$ $x=2,\quad y=0$



$$egin{aligned} x+2y&=2\ x+2y&=3 \end{aligned}$$
 $egin{aligned} x\left[egin{aligned} 1\ 2 \end{aligned}
ight]+y\left[egin{aligned} 2\ 2 \end{aligned}
ight]=\left[egin{aligned} 2\ 3 \end{aligned}
ight]$

No solution



Consider also these systems:

$$x - y = 2$$
 $x + 2y = 2$
 $2x - 2y = 4$ $x + 2y = 3$

Show all

Spanning Sets of Vectors

Definition: If $S = \{\vec{v}_1, \dots, \vec{v}_k\}$ is a set of vectors in \mathbb{R}^n , then the set of *all* linear combinations of $\vec{v}_1, \dots, \vec{v}_k$ is called the **span** of $\vec{v}_1, \dots, \vec{v}_k$ and is denoted $\operatorname{span}(\vec{v}_1, \dots, \vec{v}_k)$ or $\operatorname{span}(S)$.

If $\mathrm{span}(S) = \mathbb{R}^n$, then S is called a **spanning set** for \mathbb{R}^n .

Example: The vectors $ec{e}_1=egin{bmatrix}1\\0\end{bmatrix}$ and $ec{e}_2=egin{bmatrix}0\\1\end{bmatrix}$ are a spanning set for \mathbb{R}^2 , since for any vector $ec{x}=egin{bmatrix}a\\b\end{bmatrix}$ we have

$$aegin{bmatrix}1\\0\end{bmatrix}+begin{bmatrix}0\\1\end{bmatrix}=egin{bmatrix}a\\b\end{bmatrix}.$$

Another way to see this is that the augmented matrix associated to $ec{e}_1$, $ec{e}_2$ and $ec{x}$ is

$$\left[\begin{array}{cc|c} 1 & 0 & a \\ 0 & 1 & b \end{array}\right]$$

which is already in RREF and is consistent.

Similarly, the standard unit vectors in \mathbb{R}^n are a spanning set for \mathbb{R}^n .

Example: Find the span of $ec{u} = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Solution: The span consists of every vector \vec{x} that can be written as $\vec{x} = s\vec{u}$ for some scalar s. So it is the line through the origin with direction vector \vec{u} .

Example: Find the span of $ec{u}=egin{bmatrix}1\\2\\3\end{bmatrix}$ and $ec{v}=egin{bmatrix}4\\5\\6\end{bmatrix}$.

Solution: The span consists of every vector \vec{x} that can be written as

$$\vec{x} = s\vec{u} + t\vec{v}$$

for some scalars s and t. Since \vec{u} and \vec{v} are not parallel, this is the plane through the origin in \mathbb{R}^3 with direction vectors \vec{u} and \vec{v} .

Example: What is the span of $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$? They are not parallel, so intuitively their linear combinations should fill out all of \mathbb{R}^2 . We'll show how to see this algebraically, by row reducing the augmented matrix

$$\left[\begin{array}{cc|c} 1 & 2 & a \\ 3 & 4 & b \end{array}\right]$$

Note: The word "span" is really just a fancy way of saying "all linear combinations of these vectors".

Question: What is $\operatorname{span}(\begin{bmatrix}1\\2\end{bmatrix})$? What is $\operatorname{span}(\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix})$?

Question: We saw that $\mathrm{span}(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix})=\mathbb{R}^2$. What is $\mathrm{span}(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix})$?

Question: What vector is always in $\mathrm{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k)$?

Question: Find some vectors that span $\left\{egin{bmatrix} x \\ 2x \\ 3x \\ 4x \end{bmatrix} \mid x \in \mathbb{R} \right\}.$

Question: Find some vectors that span $\left\{ \left[egin{array}{c} x \\ y \end{array} \right] \mid y=x+1 \right\}$.