
Math 1600B Lecture 11, Section 2, 29 Jan 2014

Announcements:

Read Section 2.4 for next class: network flow and electrical networks. Work
through recommended homework questions.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lecture 10:

Linear combinations

Definition: A vector  is a linear combination of vectors  if
there exist scalars  (called coefficients) such that

Example: Is  a linear combination of  and ?

That is, can we find scalars  and  such that

Expanding this into components, this becomes a linear system

and we already know how to determine whether this system is consistent:
use row reduction!
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Theorem 2.4: A system with augmented matrix  is consistent if and

only if  is a linear combination of the columns of .

This gives a different geometrical way to understand the solutions to a
system.

Spanning Sets of Vectors

Definition: If  is a set of vectors in , then the set of all
linear combinations of  is called the span of  and is
denoted  or .

If , then  is called a spanning set for .

Example: .

Example: The span of  and  consists of every vector 

that can be written as

for some scalars  and . Since  and  are not parallel, this is the plane

through the origin in  with direction vectors  and .

Example: The line  is spanned by .

Question: What vector is always in

?
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Example: We saw that  and  are both equal to

the line through the origin with direction vector , since .

New material: Section 2.3: Spanning Sets and
Linear Independence

Linear Dependence and Independence

Suppose that we have vectors ,  and  in  such that

. This can be solved for any of the vectors in terms of the
others, e.g. . This means that .
For example,

So it is redundant to include . We'd like to be able to determine when our
spanning sets have too many vectors.

Definition: A set of vectors  is linearly dependent if there are
scalars , at least one of which is nonzero, such that

Since at least one of the scalars is non-zero, the corresponding vector can
be expressed as a linear combination of the others.

Example: , so the vectors , 

and  are linearly dependent.

Note that either of the first two can be expressed as a linear combination of
the other, but the third one is not a linear combination of the first two.
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Example: Are the vectors  and  linearly dependent?

Solution: If  and , then , which is not

possible. Similarly, if , then  is a multiple of . So the only way to

have  is with .

Theorem 2.5: The vectors  are linearly dependent if and only if
at least one of them can be expressed as a linear combination of the others.

Proof: We've seen one direction. For the other, if ,

then , so the vectors are linearly dependent.
The same argument works if it is a different vector that can be expressed in
terms of the others.

Example: What about the vectors ,  and ?

Solution: They are linearly dependent, since

Fact: Any set of vectors containing the zero vector is linearly dependent.

Definition: A set of vectors  is linearly independent if it is not
linearly dependent.

Another way to say this is that the system

has only the trivial solution .

This is something we know how to figure out! Use row reduction!
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independent?

That is, does the system

have a non-trivial solution?

The augmented matrix is

So what's the answer? There are 3 variables and 2 leading variables (the
rank is 2), so there is one free variable, which means there are non-trivial
solutions. Therefore, the vectors are linearly dependent.

Example: Are the vectors ,  and  linearly
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That is, does the system

have a non-trivial solution?
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The augmented matrix is

So what's the answer? There are 3 variables and 3 leading variables (the
rank is 3), so there are no free variables, which means there is only the
trivial solution. Therefore, the vectors are linearly independent.

Example 2.24: Are the standard unit vectors  in  linearly
independent?

Solution: The augmented matrix is

with  rows and  variables. The rank is , so there is only the trivial
solution. So the standard unit vectors are linearly independent.

Note: You can sometimes see by inspection that some vectors are linearly
dependent, e.g. if they contain the zero vector, or if one is a scalar multiple
of another. Here's one other situation:

Theorem 2.8: If , then any set of  vectors in  is linearly
dependent.

Proof: The system is a homogeneous system with  variables and 
equations. By Theorem 2.3, a homogeneous system with more variables
than equations always has a non-trivial solution.
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work required, unless you want to know how they are dependent.

Above we put vectors into the columns of a matrix in order to determine
whether they are linearly dependent. There is an alternate approach,
putting the vectors into the rows.

Example like 2.25: Consider the same three vectors we used earlier, this
time written as row vectors: ,  and

. Let's row reduce the matrix that has these vectors as
rows, giving new names to the new rows:

We got a zero row at the end, so we find that

which shows that the original row vectors are linearly dependent. This works
in general:

Theorem 2.7: Let  be row vectors in , and let  be the
 matrix whose rows are these vectors. Then  are

linearly dependent if and only if .

Proof: Suppose that the rank of  is less than . Then some sequence of
row operations will produce a zero row in . As in the example above, this
means that you can write the zero vector as a linearly combination of the
original rows. One can show that the coefficients won't all be zero, so it
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follows that the vectors are linearly dependent.

On the other hand, if the vectors are linearly dependent, then one of them
can be written as a linear combination of the others. For example, suppose

. Then if you do the row operations
, , , you will produce a zero row. So the rank

of  must be less than . The same idea works if a different vector is a
linearly combination of the others.

Question: Do the vectors  and  span ? If not, find a

vector not in their span.

Question: Are the same two vectors linearly independent?

Question: Suppose that the rows of an  matrix  are linearly
independent. What can you say about the rank of ?

Question: Suppose that the columns of an  matrix  are linearly
independent. What can you say about the rank of ?
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