
Math 1600B Lecture 12, Section 2, 31 Jan 2014

Announcements:

Read Sections 3.0 and 3.1 for next class. (2.5 is not covered.) Work through
recommended homework questions.

Quiz 4 is next week, and will focus on the material in Section 2.3 (linear
(in)dependence), 2.4 (networks) and part of 3.1/3.2.

Next office hour: Monday, 1:30-2:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lectures 10 and 11:

Linear combinations

Definition: A vector  is a linear combination of vectors  if
there exist scalars  (called coefficients) such that

Theorem 2.4: Write  for the matrix with columns . Then  is
a linear combination of  if and only if the system with
augmented matrix  is consistent.

And we know how to determine whether a system is consistent! Use row
reduction!

Spanning Sets of Vectors

Definition: If  is a set of vectors in , then the set of all
linear combinations of  is called the span of  and is
denoted  or .
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If , then  is called a spanning set for .

Example: .

Example: The span of  and  is the plane through the

origin in  with direction vectors  and .

Linear Dependence and Independence

Definition: A set of vectors  is linearly dependent if there are
scalars , at least one of which is nonzero, such that

If the only solution to this system is the trivial solution
, then the set of vectors is said to be linearly

independent.

Once again, this is something we know how to figure out! Use row
reduction!

Theorem 2.5: The vectors  are linearly dependent if and only if
at least one of them can be expressed as a linear combination of the others.

Fact: Any set of vectors containing the zero vector is linearly dependent.

Linear dependence captures the idea that there is redundancy in the set of
vectors: a smaller set will have the same span. Put another way, the vectors
will span something smaller than you expect:

Typically, two vectors will span a plane; but if one is a multiple of the other
one, then they will only span a line.

Typically, three vectors in  will span all of ; but if one is a linear
combination of the others, then they will span a plane (or something
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smaller).

Typically, one vector spans a line. But if it is the zero vector, it's span
consists of only the origin.

Note: You can sometimes see by inspection that some vectors are linearly
dependent, e.g. if they contain the zero vector, or if one is a scalar multiple
of another. Here's one other situation:

Theorem 2.8: If , then any set of  vectors in  is linearly
dependent.

Theorem 2.7: Let  be row vectors in , and let  be the
 matrix whose rows are these vectors. Then  are

linearly dependent if and only if .

We saw this by doing row reduction on  and keeping track of how each
new row is a linear combination of the previous rows. See Example 2.25 in
the text.

Questions?

New material: Section 2.4: Network Analysis

(We aren't covering the other topics in Section 2.4.)

Example 2.30: Consider a network of water pipes as in the figure to the
right.

Some pipes have a known amount of water flowing (measured in litres per
minute) and some have an unknown amount. Let's try to figure out the
possible flows.

Conservation of flow tells us that the at each node, the amount of water
entering must equal the amount leaving.

Here are the constraints:
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We row reduce the augmented matrix for the equations on the right:

The solutions are

So if we control flow on AD branch, the others are determined.

In the text, flows are always assumed to be positive, so that places
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constraints on .

Because of , we must have .

And from , we must have .

The other constraints don't add anything, so we find that .

This lets us determine the minimum and maximum flows:

Exercise 2.16:

This figure represents traffic flow on a grid of
one-way streets, in vehicles per minute.

Since the same number of vehicles should
enter and leave each intersection, we again
get a system of equations that must be
satisfied.

On board:
(a) Set up and solve system
(b) If , what are other flows?
(c) What are minimum and maximum flows
on each street?
(extra) What can you say about how  and  compare?
(d) What happens if all directions are reversed?
(extra) What happens if the 5 changes to a 0 because of construction?

Electrical Networks
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In an electrical network, a battery has a voltage
 which produces a flow of current  in the

wires.

We model devices in the circuit, such as light
bulbs and motors, as resistors, because they
slow down the flow of current by taking away
some of the voltage:

Ohm's Law: voltage drop = resistance (in Ohms) times current (in amps):

(The book uses  for the voltage drop.)

Kirchhoff's Voltage Law says that the sum of the voltage drops around a
closed loop in a circuit is equal to the voltage provided by any batteries in
that loop.

On board: Analyze simple circuit, then 2.4.22 (a).

To handle circuits with branching, we need another law. (Draw Exercise
2.4.20 on board.)

Kirchhoff's Current Law says that the sum of the currents flowing into a
node equals the sum of the currents leaving, just like for other networks.

On board: Exercises 2.4.20 and 2.4.22 (b).

The other applications in Section 2.4, and the short Exploration on GPS after
Section 2.4, are also quite interesting, but won't be covered in the course.
Next class: Section 3.1.
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