
Math 1600B Lecture 13, Section 2, 3 Feb 2014

Announcements:

Read Sections 3.1 and 3.2 for next class. Work through recommended
homework questions.

Quiz 4 is this week, and will focus on the material in Section 2.3 (linear
(in)dependence), 2.4 (networks) and part of 3.1 (what we cover today).

Office hour: today, 1:30-2:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Lecture 12:

We covered network analysis and electrical networks in Section 2.4. Since
the material won't be used today, I won't summarize it. I didn't quite finish
Exercise 2.4.20, so I leave it as an exercise to solve the system I derived on
the board:

We aren't covering Section 2.5.

New material: Section 3.1: Matrix Operations

(Lots of definitions, but no tricky concepts.)

Definition: A matrix is a rectangular array of numbers called the entries.
The entries are usually real (from ), but may also be complex (from ).

Examples:
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The entry in the th row and th column of  is usually written  or

sometimes . For example,

Definition: An  matrix  is square if . The diagonal entries
are . If  is square and the nondiagonal entries are all zero,
then  is called a diagonal matrix.

Definition: A diagonal matrix with all diagonal entries equal is called a
scalar matrix. A scalar matrix with diagonal entries all equal to  is an
identity matrix.

Note: Identity  scalar  diagonal  square.

Now we're going to mimick a lot of what we did when we first introduced
vectors.

Definition: Two matrices are equal if they have the same size and their
corresponding entries are equal.
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The first two above are equal, but no other two are equal. We distinguish
row matrices from column matrices!

Matrix addition and scalar multiplication

Our first two operations are just like for vectors:

Definition: If  and  are both  matrices, then their sum  is
the  matrix obtained by adding the corresponding entries of  and

. Using the notation  and , we write

Examples:

Definition: If  is an  matrix and  is a scalar, then the scalar
multiple  is the  matrix obtained by multiplying each entry by .
We write  or .

Example:

Definition: As expected,  means  and  means .

The zero matrix has all entries  and is denoted  or . Of
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course, .

So we have the real number , the zero vector  (or  in the text) and the
zero matrix .

Matrix multiplication

This is unlike anything we have seen for vectors.

Definition: If  is  and  is , then the product  is
the  matrix whose  entry is

This is the dot product of the th row of  with the th column of .

Note that for this to make sense, the number of columns of  must equal
the number of rows of .

This may seem very strange, but it turns out to be useful. We will never use
componentwise multiplication, as it is not generally useful.

Examples on board:  times ,  times ,  times
.

One motivation for this definition of matrix multiplication is that it comes up
in linear systems.

Example 3.8: Consider the system
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The left-hand sides are in fact a matrix product:

Every linear system with augmented matrix  can be written as

.

Note: In general, if  is  and  is a column vector in  ( ),
then  is a column vector in  ( ). So one thing a matrix  can do
is transform column vectors into column vectors. This point of view will be
important later.

Question: If  is an  matrix and  is the first standard unit vector
in , what is ?

The answer is an  column matrix, whose th entry is the dot product
of the th row of  with the vector . But

, the first entry. So this just "picks
out" the first column of . For example,

More generally, we have:

Theorem 3.1: If  is ,  is the th  standard row vector and
 is the th  standard column vector, then
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Powers

In general,  doesn't make sense. But if  is  (square), then

 does make sense.  is  as well, and so it also makes
sense to define the power

We write  and .

We will see later that , so the expression for  is
unambiguous. And it follows that

for all nonnegative integers  and .

Example 3.13 on board: Powers of

True/false: Every diagonal matrix is a scalar matrix.

False. But every scalar matrix is diagonal.

True/false: If  is diagonal, then so is .

True. Write  for the th row of  and  for the th column. The  entry of

 is the dot product . If , then the non-zero entry of  (which is

in the th spot) doesn't line up with the non-zero entry of  (in the th

spot), so .

True/false: If  and  are both square, then  is square.

False. For example, if  is  and  is  then  is not defined. But
if  and  are square of the same size, then  is defined and is also
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square.

Challenge question (for next class): Is there a nonzero matrix  such

that ?

Next class: We'll cover the properties these operations have, from Section
3.2.
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