
Math 1600B Lecture 14, Section 2, 5 Feb 2014

Announcements:

Continue reading Section 3.1 (partitioned matrices) and Section 3.2 for
next class. Work through recommended homework questions.

Quiz 4 is this week, and will focus on the material in Section 2.3 (linear
(in)dependence), 2.4 (networks) and the part of 3.1 we covered last class.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lecture 13:

Section 3.1: Matrix Operations

Definition: An matrix  is a rectangular array of numbers called
the entries, with  rows and  columns.  is called square if .

The entry in the th row and th column of  is usually written  or

sometimes .

The diagonal entries are .

If  is square and the nondiagonal entries are all zero, then  is called a
diagonal matrix.

Definition: A diagonal matrix with all diagonal entries equal is called a
scalar matrix. A scalar matrix with diagonal entries all equal to  is an
identity matrix.

m × n A
m n A m = n

i j A aij

Aij

, , …a11 a22

A A

[ ]1

2√
−3/2

2.3

π

0

not square or diagonal

[ ]1
3

2
4

square

[ ]1
0

0
4

diagonal

[ ]1
0

0
0

diagonal

1



Note: Identity  scalar  diagonal  square.

Matrix addition and scalar multiplication

Our first two operations are just like for vectors:

Definition: If  and  are both  matrices, then their sum  is
the  matrix obtained by adding the corresponding entries of  and

:   .

Definition: If  is an  matrix and  is a scalar, then the scalar
multiple  is the  matrix obtained by multiplying each entry by :  

.

New material: Section 3.2: Matrix Algebra

Addition and scalar multiplication for matrices behave exactly like addition
and scalar multiplication for vectors, with the entries just written in a
rectangle instead of in a row or column.

Theorem 3.2: Let ,  and  be matrices of the same size, and let  and
 be scalars. Then:

(a)  (comm.) (b)  (assoc.)

(c) (d) 

(e)  (dist.) (f)  (dist.)

(g) (h) 

Compare to Theorem 1.1.

This means that all of the concepts for vectors transfer to matrices.

E.g., manipulating matrix equations:
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We define a linear combination to be a matrix of the form:

And we can define the span of a set of matrices to be the set of all their
linear combinations.

And we can say that the matrices  are linearly
independent if

has only the trivial solution , and are linearly
dependent otherwise.

Our techniques for vectors also apply to answer questions such as:

Example 3.16 (a): Suppose

Is  a linear combination of ,  and ?

That is, are there scalars ,  and  such that

Rewriting the left-hand side gives

and this is equivalent to the system

2(A + B) − 3(2B − A) = 2A + 2B − 6B + 3A = 5A − 4B.
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and we can use row reduction to determine that there is a solution, and to
find it if desired: , so .

This works exactly as if we had written the matrices as column vectors and
asked the same question.

See also Examples 3.16(b), 3.17 and 3.18 in text.

More review of Lecture 13:

Matrix multiplication

Definition: If  is  and  is , then the product  is
the  matrix whose  entry is

This is the dot product of the th row of  with the th column of .

Powers

In general,  doesn't make sense. But if  is  (square), then
it makes sense to define the power

We write  and .
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We will see in a moment that , so the expression for 
is unambiguous. And it follows that

for all nonnegative integers  and .

New material: Section 3.2: Matrix Algebra
(continued)

Properties of Matrix Multiplication and Powers

This is new ground, as you can't multiply vectors.

For the most part, matrix multiplication behaves like multiplication of real
numbers, but there are several differences:

Example 3.13 on whiteboard: Powers of

Question: Is there a nonzero matrix  such that ?

Yes. For example, take

Challenge problems: (1) Find a  matrix  such that  but

.

(2) Find a  matrix  such that  but .

I'll come back to these next class.

Example on whiteboard: Tell me the entries of two  matrices  and
, and let's compute  and .
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So we've seen:

We can have  but  for some .

We can have , but .
We can have .

These are good material for true/false questions...

But most expected properties do hold:

Theorem 3.3: Let ,  and  be matrices of the appropriate sizes, and let
 be a scalar. Then:

(a) (associativity)

(b) (left distributivity)

(c) (right distributivity)

(d) (no cool name)

(e)  if  is (identity)

The text proves (b) and half of (e). (c) and the other half of (e) are the same,
with right and left reversed.

Proof of (d):

so . The other part of (d) is similar.

Proof of (a):

so .
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Example on board: .

Example on board: Solve

for  in terms of  and .

Example 3.20: If  and  are square matrices of the same size, is

? On board.

Solution: Using Theorem 3.3, we find:

Suppose . Subtracting

 from both sides gives . So the answer is "No,
unless  and  commute."

Note: Theorem 3.3 shows that a scalar matrix  commutes with every
 matrix . So

(  is like the number .)

Note: The non-commutativity of matrices is directly related to quantum
mechanics. Observables in quantum mechanics are described by matrices,
and if the matrices don't commute, then you can't know both quantities at

the same time! If time, mention  and multiplication by .

On Friday: more from Sections 3.1 and 3.2: Transpose, symmetric matrices,
partitioned matrices.
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