
Math 1600B Lecture 15, Section 2, 7 Feb 2014

Announcements:

Read Section 3.3 for next class. Work through recommended homework
questions.

Office hour: next Monday, 12:30-1:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lectures 13 and 14:

Matrix multiplication

Definition: If  is  and  is , then the product  is
the  matrix whose  entry is

To remember the shape of :

Note: In particular, if  is a column vector in , then  is a column
vector in . So one thing a matrix  can do is transform column vectors
into column vectors. This point of view will be important later.

For the most part, matrix multiplication behaves like multiplication of real
numbers, but there are several differences:

We can have  but  for some .

We can have , but .

A m × n B n × r C = AB
m × r i, j

cij = + + ⋯ + =ai1b1j ai2b2j ainbnj ∑
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= (A) ⋅ (B).rowi colj
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B Rn AB
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We can have .

But most expected properties do hold:

Theorem 3.3: Let ,  and  be matrices of the appropriate sizes, and let
 be a scalar. Then:

(a) (associativity)

(b) (left distributivity)

(c) (right distributivity)

(d) (no cool name)

(e)  if  is (identity)

New material: Sections 3.1 and 3.2 continued.

Partitioned Matricies

Sometimes it is natural to view a matrix as partitioned into blocks. For
example:

This can make matrix multiplication much easier when there are blocks that
are zero or an identity matrix. For example, if

then

AB ≠ BA

A B C
k

A(BC) = (AB)C

A(B + C) = AB + AC

(A + B)C = AC + BC

k(AB) = (kA)B = A(kB)
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You pretend that the submatrices are numbers and do matrix multiplication.
As long as all of the sizes match up, this works. But keep the left/right order
straight!

See Example 3.12 for a larger, more complicated worked example.

The most common (and important) cases are when one or both of the
matrices are partitioned into rows or columns. For example, if  is 
and  is , and we partition  into its columns as

, then we have:

where we think of  and the 's as scalars. The first column of  consists

of the dot products of the rows of  with the first column  of .

Example on board:  times .

Note that each column of  is a linear combination of the columns of .

Similarly, if we partition  into rows, we can compute

Same example on board.

If we partition  into rows and  into columns, we get
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which is just the usual description of , where the  entry is the dot
product of the th row of  with the th column of !

(Outer products and Example 3.11 not covered.)

The Transpose and Symmetric Matrices

Here's another operation on matrices, which has no analog for real
numbers:

Definition: The transpose of an  matrix  is the  matrix 
whose  entry is the  entry of .

Example 3.14: The transposes of

are

Note that the columns and rows get interchanged.

One use of the transpose is to convert between row vectors and column
vectors. In particular, we can use this to express the dot product in terms of
matrix multiplication. If
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then

Properties of the transpose

Theorem 3.4: Let  and  be matrices of the appropriate sizes, and let 
be a scalar. Then:

(a) (b) 

(c)    (d)    !

(e)  for all nonnegative integers 

(a), (b) and (c) are easy to see. (d) is more of a surprise, so it is worth
explaining:

Proof of (d): Suppose  is  and  is . Then both of 

and  are . We have to check that the entries are equal:

Example on board

Note that (b) and (d) extend to several matrices. For example:
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and

In particular, (e) follows: .

Symmetric matrices

Definition: A square matrix  is symmetric if . That is, 

for every  and .

Example: These matrices are symmetric:

Example: These matrices are not symmetric:

There are two ways to get a symmetric matrix from a non-symmetric
matrix:

1. If  is square, then  is symmetric. This is because

Example on board.

2. And if  is any matrix, then  is symmetric. This is because

The same kind of argument shows that  is symmetric.

Example on board.
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True/false: If  is symmetric, so is . On board.

Challenge problems

Question: Find a  matrix  such that  but .

One solution is

Question: Find a  matrix  such that  but .

One solution is

Where did I get this from? It is rotation by 120 degrees! Explain on board.

Similarly, for each  you can find a matrix such that  but no lower
power of  is the identity.

A A2

3 × 3 A ≠ OA2 = OA3

A =
⎡
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