
Math 1600B Lecture 16, Section 2, 10 Feb 2014

Announcements:

Continue reading Section 3.3. But we aren't covering elementary
matrices. Work through recommended homework questions.

Quiz 5 will focus on 3.1, 3.2 and the first half of 3.3 (up to and including
Example 3.26).

Office hour: today, 12:30-1:30 and Wednesday, 10:30-11:15, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Last week, Sections 3.1 and 3.2

We learned how to add and subtract matrices, how to multiply by a scalar,
and how to multiply matrices (including partitioned matrices). We also
learned about the transpose and symmetric matrices. And we learned the
properties that these operations have.

For example, if  is partitioned into columns as ,
then we have:

Also, remember that if  is partitioned into columns as
, then

a linear combination of the columns of .

After adding, subtracting and multiplying, what is missing?

B B = [ ∣ ∣ ⋯ ∣ ]b ⃗ 1 b ⃗ 2 b ⃗ 
r

AB = [ A ∣ A ∣ ⋯ ∣ A ].b ⃗ 1 b ⃗ 2 b ⃗ 
r

A
A = [ ∣ ∣ ⋯ ∣ ]a⃗ 1 a⃗ 2 a⃗ n

A = + ⋯ + ,x⃗ x1a⃗ 1 xna⃗ n

A



New material: Section 3.3, The Inverse of a
Matrix

Suppose we want to solve , where ,  and  are real numbers. If
, then we proceed as follows:

(We also used associativity.)

We could do the same thing for a matrix equation  if we could find a

matrix  such that . Then:

So, if  has a solution, then it must be . On the other hand, let's

check whether is a solution:

where the last step only works if we know that  as well.

So we require both conditions:

Definition: An inverse of an  matrix  is an  matrix  such
that

If such an  exists, we say that  is invertible.

(We'll talk about what happens when  is not square tomorrow.)

Example: If , then  is an inverse of . (On

board.)

ax = b a b x
a ≠ 0

ax = b ⟹ ax = b ⟹ x = .
1
a

1
a

b

a

A =x⃗ b ⃗ 
A′ A = IA′

A = ⟹ A = ⟹ = .x⃗ b ⃗ A′ x⃗ A′b ⃗ x⃗ A′b ⃗ 

A =x⃗ b ⃗ A′b ⃗ 

A′b ⃗ 

A( ) = A = ? = ,A′b ⃗ A′b ⃗ b ⃗ 

A = IA′

n × n A n × n A′

A = I and A = I.A′ A′

A′ A

A

A = [ ]1
3

2
7

= [ ]A′ 7
−3

−2
1

A



Example: Does  have an inverse?

No, since for any matrix , we always have  equal to a zero matrix, so it
can't be equal to the identity matrix.

Example: Does  have an inverse?

No. Suppose that  was an inverse to . Then .

In particular, if  is the first column of , then .
But this means that  is a linear combination of the columns of ,
which is not possible since the columns are parallel and point in a different
direction.
(The book gives a different argument.)

We'll learn next class how to determine whether a matrix has an inverse,
and how to find it when it does. Today we'll discuss some general properties,
and also  matrices.

Theorem 3.6: If  is an invertible matrix, then its inverse is unique.

Proof: Suppose that  and  are both inverses of . We'll show they
must be equal:

Because of this, we write  for the inverse of , when  is invertible. We

do not write .

Theorem 3.7: If  is an invertible matrix  matrix, then the system

 has the unique solution  for any  in .

This follows from the argument we gave earlier.

Example on board: Solve the systems

O = [ ]0
0

0
0

C CO

B = [ ]−1
2

3
−6

B′ B B = IB′

b ⃗ B′ B =b ⃗ e ⃗ 1
e ⃗ 1 B

2 × 2

A

A′ A′′ A

= I = (A ) = ( A) = I = . □A′ A′ A′ A′′ A′ A′′ A′′ A′′

A−1 A A
1
A

A n × n

A =x⃗ b ⃗ =x⃗ A−1b ⃗ b ⃗ Rn



Remark: This is not in general an efficient way to solve a system. Using
row reduction is usually faster. And row reduction works when the coefficient
matrix is not square or not invertible. The above method can be useful if

you need to solve a lot of systems with the same  but varying .

Theorem: The matrix  is invertible if and only if .

When this is the case,

We call  the determinant of , and write it .
It determines whether or not  is invertible, and also shows up in the

formula for .

Example: The determinant of  is ,

so

as we saw before.

Example: The determinant of  is

, so  is not invertible (as we saw).

Why the formula works: Show on board that

and
x + 2y

3x + 7y

= 3
= 4

x + 2y

3x + 7y

= 2
= −1

A b ⃗ 

A = [ ]a

c

b

d
ad − bc ≠ 0

= [ ].A−1 1
ad − bc

d

−c

−b

a

ad − bc A det A
A

A−1

A = [ ]1
3

2
7

det A = 1 ⋅ 7 − 2 ⋅ 3 = 1

= [ ],A−1 1
1

7
−3

−2
1

B = [ ]−1
2

3
−6

det B = (−1)(−6) − 3 ⋅ 2 = 0 B

[ ][ ] = det A[ ].a

c

b

d

d

−c

−b

a

1
0

0
1



Therefore, if  is nonzero,

A similar argument works for the other order of multiplication.

Why  is not invertible when : If , then

where we write  for . So if  is an inverse of , then

But if the entries of  are zero, then so are the entries of , and it's

impossible to have .

Properties of Invertible Matrices

(The above was for  matrices, but here they are .)

Theorem 3.9: Assume  and  are invertible matrices of the same size.
Then:

 is invertible and a.

If  is a non-zero scalar, then  is invertible and b.

 is invertible and  (socks and shoes rule)c.

 is invertible and d.

 is invertible for all nonnegative integers  and e.

To verify these, in every case you just check that the matrix shown is an
inverse. All 5 done on the board.

Remark: Property (c) is the most important, and generalizes to more than

two matrices, e.g. .

det A

[ ]( [ ]) = [ ] = [ ].a

c

b

d

1
det A

d

−c

−b

a

det A

det A

1
0

0
1

1
0

0
1

A det A = 0 det A = 0

AB = (det A)I = O,

B [ ]d

−c

−b

a
A′ A

B = AB = O = OA′ A′

B A
A = IA′

2 × 2 n × n

A B

A−1 ( = AA−1)−1

c cA (cA =)−1 1
c

A−1

AB (AB =)−1
B−1A−1

AT ( = (AT )−1
A−1)T

An n ( = (An)−1
A−1)n

(ABC =)−1
C −1B−1A−1



Remark: For  a positive integer, we define  to be .

Then , and more generally  for all integers
 and .

Remark: There is no formula for . In fact,  might not be
invertible, even if  and  are.

We can sometimes use these properties to solve a matrix equation for an
unknown matrix. Assume that ,  and  are invertible matrices of the
same size.

Example: Solve  for .

Solution:

Example: Solve  for .

Solution:

Example: Solve ? There is no easy method in
general, using linear algebra.

Questions:

True/false: If  is symmetric, then  is invertible.

n A−n ( = (A−1)n
An)−1

= I =AnA−n A0 =ArAs Ar+s

r s

(A + B)−1
A + B

A B

A B X

AX = BAB2 B−1 X

AX = BAB2 B−1 ⟹ (AX ) = (BA )A−1 B2 B−2 A−1 B−1 B−2

⟹ X = BAA−1 B−3

(A B = BAXT )−1
X

(A B = BAXT )−1 ⟹ ((A B = (BAXT )−1)−1 )−1

⟹ A B =XT A−1B−1

⟹ (A B) = ( )A−1 XT B−1 A−1 A−1B−1 B−1

⟹ =XT A−2B−2

⟹ ( = (XT )T
A−2B−2)T

⟹ X = (A−2B−2)T

A + BX + C = 0X2

A A



False. For example, the zero matrix is symmetric, but not invertible.

True/false: If  is symmetric and invertible, then  is symmetric.

True, because , using Theorem 3.9 (d).

True/false: If , then .

False. For example, if  is the zero matrix, then  for any
matrices  and .

True/false: If  and  is invertible, then .

True. If , then  and so .

Challenge problem: Can you find a  matrix  and a  matrix 

such that  and ?

We'll discuss this one next class.

A A−1

( = ( =A−1)T
AT )−1

A−1

AB = AC B = C

A AB = AC
B C

AB = AC A B = C

AB = AC AB = ACA−1 A−1 B = C

2 × 3 A 3 × 2 A′

A =A′ I2 A =A′ I3


