
Math 1600B Lecture 17, Section 2, 12 Feb 2014

Announcements:

Read Section 3.5 for Friday. This is core material. We aren't covering 3.4.
Work through recommended homework questions.

Quiz 5 will focus on 3.1, 3.2 and the first half of 3.3 (up to and including
Example 3.26).

Midterm: It is Saturday, March 1, 6:30pm-9:30pm, one week after reading
week. If you have a conflict, you must let me know this week. It will cover
the material up to and including the lecture on Monday, Feb 24. Note that
Friday, Feb 14 and Monday, Feb 24 cover core material for the course.

No tutorials during reading week.

Office hour: None during reading week.

Help Centers: Monday-Friday 2:30-6:30 in MC 106, but not during reading
week.

Partial review of Lecture 16:

Definition: An inverse of an  matrix  is an  matrix  such
that

If such an  exists, we say that  is invertible.

Theorem 3.6: If  is an invertible matrix, then its inverse is unique.

Because of this, we write  for the inverse of , when  is invertible. We

do not write .
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Example: If , then  is the inverse of .

But the zero matrix and the matrix  are not invertible.

Theorem 3.7: If  is an invertible matrix  matrix, then the system

 has the unique solution  for any  in .

Remark: This is not in general an efficient way to solve a system.

Theorem 3.8: The matrix  is invertible if and only if

. When this is the case,

We call  the determinant of , and write it . It determines

whether or not  is invertible, and also shows up in the formula for .

Properties of Invertible Matrices

Theorem 3.9: Assume  and  are invertible matrices of the same size.
Then:

 is invertible and a.

If  is a non-zero scalar, then  is invertible and b.

 is invertible and  (socks and shoes rule)c.

 is invertible and d.

 is invertible for all  and e.

To verify these, in every case you just check that the matrix shown is an
inverse.

Remark: Property (c) is the most important, and generalizes to more than

two matrices, e.g. .
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Remark: For  a positive integer, we define  to be .

Then , and more generally  for all integers
 and .

Remark: There is no formula for . In fact,  might not be
invertible, even if  and  are.

We can use these properties to solve a matrix equation for an unknown
matrix.

New material

Challenge problem:

Can you find a  matrix  and a  matrix  such that 

and ?

There's no problem getting . (Find an example.)

But it's not possible to have  with the given sizes.

Suppose we did have  with  a  matrix.
Consider the homogenous system

Since  and there are three variables, this system must have
infinitely many solutions. But

so there is only one solution. This is a contradiction.

More generally, unless  is square, you can't find a matrix  that makes

both  and  true.

The fundamental theorem of invertible matrices:
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Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .

Proof: We have seen that (a)  (b) in Theorem 3.7 above.

We'll use our past work on solving systems to show that (b)  (c)
 (d)  (b), which will prove that (b), (c) and (d) are

equivalent.

We will only partially explain why (b) implies (a).

(b)  (c): If  has a unique solution for every , then it's

true when  happens to be the zero vector.

(c)  (d): Suppose that  has only the trivial solution.
That means that the rank of  must be .
So in reduced row echelon form, every row must have a leading .
The only  matrix in reduced row echelon form with  leading

's is the identity matrix.

(d)  (b): If the reduced row echelon form of  is , then the

augmented matrix  row reduces to , from which you
can read off the unique solution .

(b)  (a) (partly): Assume  has a solution for every .
That means we can find  such that  for each .
If we let  be the matrix with the 's as columns,
then

So we have found a right inverse for .
It turns out that  as well, but this is harder to see. 
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Note: We have omitted (e) from the theorem, since we aren't covering
elementary matrices. They are used in the text to prove the other half of (b)

 (a).

We will see many important applications of Theorem 3.12. For now, we
illustrate one theoretical application and one computational application.

Theorem 3.13: Let  be a square matrix. If  is a square matrix such that

either  or , then  is invertible and .

Proof: If , then the system  has only the trivial solution, as
we saw in the challenge problem. So (c) is true. Therefore (a) is true, i.e. 
is invertible. Then:

(The uniqueness argument again!)

This is very useful! It means you only need to check multiplication in one
order to know you have an inverse.

Gauss-Jordan method for computing the inverse

Motivate on board: we'd like to find a  such that .

Theorem 3.14: Let  be a square matrix. If a sequence of row operations
reduces  to , then the same sequence of row operations transforms 

into .

Why does this work? It's the combination of our arguments that (d) 
(b) and (b)  (a). If we row reduce  to , then .
So if  is the matrix whose columns are the 's, then . So, by

Theorem 3.14, .

The trick is to notice that we can solve all of the systems at once
by row reducing . The matrix on the right will be exactly !

Example on whiteboard: Find the inverse of .
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Illustrate proof of Theorem 3.14.

Example on whiteboard: Find the inverse of .

Illustrate proof of Theorem 3.14.

Example on whiteboard: Find the inverse of .

So now we have a general purpose method for determining whether a
matrix  is invertible, and finding the inverse:

1. Form the  matrix .

2. Use row operations to get it into reduced row echelon form.

3. If a zero row appears in the left-hand portion, then  is not invertible.

4. Otherwise,  will turn into , and the right hand portion is .

The trend continues: when given a problem to solve in linear algebra, we
usually find a way to solve it using row reduction!

We aren't covering inverse matrices over .

Questions:

Question: Let  be a  matrix with rank . Is  invertible? What if the
rank is ?

True/false: If  is a square matrix, and the column vectors of  are linearly
independent, then  is invertible.

True/false: If  and  are square matrices such that  is not invertible,
then at least one of  and  is not invertible.

True/false: If  and  are matrices such that , then .

A =
⎡
⎣

1
2
1

0
1

−2

2
3
5

⎤
⎦

B = [ ]−1
2

3
−6

A

n × 2n [A ∣ I ]

A

A I A−1

Zm

A 4 × 4 3 A
4

A A
A

A B AB
A B

A B AB = I BA = I


