Math 1600B Lecture 18, Section 2, 14 Feb 2014

Announcements:

Continue **reading** Section 3.5. We aren't covering 3.4. Work through recommended homework questions.

Midterm: It is Saturday, March 1, 6:30pm-9:30pm, one week after reading week. If you have a **conflict**, you must let me know this week. It will cover the material up to and including the lecture on Monday, Feb 24.

Four **practice midterms** have been posted on the course web page.

Office hour and tutorials: None during reading week. The tutorial after reading week will be for midterm review; no quiz.

Help Centers: Monday-Friday 2:30-6:30 in MC 106, but not during reading week.

Partial review of Section 3.3, Lectures 16 and 17:

Definition: An **inverse** of an $n \times n$ matrix A is an $n \times n$ matrix A' such that

$$
AA'=I \quad \text{and} \quad A'A=I.
$$

If such an A' exists, we say that A is **invertible**.

Theorem 3.6: If A is an invertible matrix, then its inverse is unique.

We write A^{-1} for **the** inverse of A , when A is invertible.

Theorem 3.8: The matrix $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$. When this is the case, *c* $\begin{bmatrix} b \ d \end{bmatrix}$ is invertible if and only if $ad-bc\neq 0$

> $A^{-1} = \frac{1}{cd-ba} \begin{bmatrix} d & -b \\ a & a \end{bmatrix}.$ *ad* − *bc d* $-c$ −*b a*

We call $ad-bc$ the **determinant** of A , and write it $\det A$.

Properties of Invertible Matrices

Theorem 3.9: Assume A and B are invertible matrices of the same size. Then:

a. A^{-1} is invertible and $(A^{-1})^{-1} = A$

b. If c is a non-zero scalar, then cA is invertible and $\left(cA\right)^{-1} = \frac{1}{c}A^{-1}$

- c. AB is invertible and $(AB)^{-1}=B^{-1}A^{-1}$ (socks and shoes rule) *c AB* (*AB*) = −1 *B*−1*A*−1
- d. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

e. A^n is invertible for all $n\geq 0$ and $(A^n)^{-1}=(A^{-1})^n$

Remark: There is no formula for $(A + B)^{-1}$. In fact, $A + B$ might not be invertible, even if A and B are.

The fundamental theorem of invertible matrices:

Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let A be an $n \times n$ matrix. The following are equivalent:

a. A is invertible.

b. $A\vec{x}=\vec{b}$ has a unique solution for every $\vec{b}\in\mathbb{R}^n$.

c. $A\vec{x}=\vec{0}$ has only the trivial (zero) solution.

d. The reduced row echelon form of A is $I_n.$

Theorem 3.13: Let A be a square matrix. If B is a square matrix such that either $AB = I$ or $BA = I$, then A is invertible and $B = A^{-1}.$

Gauss-Jordan method for computing the inverse

Theorem 3.14: Let A be a square matrix. If a sequence of row operations reduces A to I , then the same sequence of row operations transforms I into $A^{-1}.$

This gives a general purpose method for determining whether a matrix A is invertible, and finding the inverse:

 $1.$ Form the $n\times 2n$ matrix $[A \mid I].$

2. Use row operations to get it into reduced row echelon form.

3. If a zero row appears in the left-hand portion, then A is not invertible.

4. Otherwise, A will turn into I , and the right hand portion is $A^{-1}.$

 $\bm{\textsf{True}}$ / $\bm{\textsf{false}}$: If A and B are square matrices such that AB is not invertible, then at

least one of A and B is not invertible.

 $\bf{True/false}$: If A and B are matrices such that $AB = I$, then $BA = I$.

 $\boldsymbol{\mathsf{Question:}}$ Find invertible matrices A and B such that $A+B$ is not invertible.

New material: Section 3.5: Subspaces, basis, dimension and rank

This section contains some of the most important concepts of the course.

Subspaces

A generalization of lines and planes through the origin.

Definition: A subspace of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that:

1. The zero vector $\vec{0}$ is in S .

2. S is closed under addition: If \vec{u} and \vec{v} are in S , then $\vec{u} + \vec{v}$ is in S .

3. S is **closed under scalar multiplication**: If \vec{u} is in S and c is any scalar, then $c\vec{u}$ is in $S.$

Conditions (2) and (3) together are the same as saying that S is **closed under linear combinations**.

 $\boldsymbol{\mathsf{Example:}}\ \mathbb{R}^n$ is a subspace of $\mathbb{R}^n.$ Also, $S=\{\vec{0}\}$ is a subspace of $\mathbb{R}^n.$

Example: A plane $\mathcal P$ through the origin in $\mathbb R^3$ is a subspace. Applet.

Here's an algebraic argument. Suppose \vec{v}_1 and \vec{v}_2 are direction vectors for \mathcal{P} , so $\mathcal{P} = \mathrm{span}(\vec{v}_1, \vec{v}_2).$

(1) $\vec{0}$ is in ${\cal P}$, since $\vec{0} = 0 \vec{v}_1 + 0 \vec{v}_2$. (2) If $\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2$ and $\vec{v} = d_1\vec{v}_1 + d_2\vec{v}_2$, then

$$
\begin{aligned} \vec u + \vec v &= (c_1 \vec v_1 + c_2 \vec v_2) + (d_1 \vec v_1 + d_2 \vec v_2) \\ &= (c_1 + d_1) \vec v_1 + (c_2 + d_2) \vec v_2 \end{aligned}
$$

which is in $\mathrm{span}(\vec v_1, \vec v_2)$ as well. (3) For any scalar c ,

$$
c\vec{u} = c(c_1\vec{v}_1 + c_2\vec{v}_2) = (cc_1)\vec{v}_1 + (cc_2)\vec{v}_2
$$

which is also in $\mathrm{span}(\vec v_1, \vec v_2).$

On the other hand, a plane **not** through the origin is not a subspace. It of course fails (1), but the other conditions fail as well, as shown in the applet.

As another example, a line through the origin in \mathbb{R}^3 is also a subspace.

The **same** method as used above proves:

 ${\sf Theorem 3.19:}$ Let $\vec v_1,\vec v_2,\ldots,\vec v_k$ be vectors in $\mathbb R^n.$ Then ${\rm span}(\vec v_1,\ldots,\vec v_k)$ is a subspace of \mathbb{R}^n .

See text. We call $\mathrm{span}(\vec v_1, \dots, \vec v_k)$ the $\mathop{\sf subspace}$ spanned by $\vec v_1, \dots, \vec v_k$. This generalizes the idea of a line or a plane through the origin.

Example: Is the set of vectors
$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$
 with $x = y + z$ a subspace of \mathbb{R}^3 ?
\nHere *S* is the set of all vectors of the form $\begin{bmatrix} y + z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. That is,
\n $S = \text{span}(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix})$, so it is a subspace.

Alternatively, one could check the properties:

(1) This holds with $y = z = 0.$ (2) Since $\left|\begin{array}{c} y_1+z_1\ y_1 \end{array}\right|+\left|\begin{array}{c} y_2+z_2\ y_2 \end{array}\right|=\left|\begin{array}{c} y_1+z_1+y_2+z_2\ y_1+y_2 \end{array}\right|$ is of the right form, this condition holds. (3) Since $c \left| \begin{array}{cc} y+z \ y^+ \end{array} \right| = \left| \begin{array}{cc} cy+cz \ cy \end{array} \right|$, this condition holds too. $\overline{}$ $y_1 + z_1$ *y*1 *z*1 \overline{a} \overline{a} $\overline{}$ $\overline{}$ *y*² + *z*² *y*2 *z*2 \overline{a} \overline{a} \overline{a} $\overline{}$ $y_1 + z_1 + y_2 + z_2$ *y*¹ + *y*² $z_1 + z_2$ \overline{a} \overline{a} \overline{a} *y* + *z y z* \overline{a} \overline{a} $\overline{}$ $\overline{}$ *cy* + *cz cy cz* \overline{a} \overline{a}

This is geometrically a plane through the origin, so our previous discussion applies as well.

See Example 3.38 in the text for a similar question.

Example: Is the set of vectors
$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$
 with $x = y + z + 1$ a subspace of \mathbb{R}^3 ?

No, because it doesn't contain the zero vector. (The other properties don't hold either.)

Example: Is the set of vectors $\begin{bmatrix} x \ y \end{bmatrix}$ with $y = \sin(x)$ a subspace of \mathbb{R}^2 ?

It does contain the zero vector. Let's check condition (3): Consider a vector

 $\begin{bmatrix} x \\ \sin(x) \end{bmatrix}$ in this set, and let *c* be a scalar. Then

 $c\left[\frac{x}{\sin(x)} \right] = \left[\frac{cx}{c\sin(x)} \right] \, .$ *cx* $c\sin(x)$

and $c\sin(x)$ is not usually equal to $\sin(cx).$

To show that this is false, we give an explicit counterexample:

 $\left|\frac{\pi/2}{1}\right|$ is in the set, but $2\left|\frac{\pi/2}{1}\right|=\left|\frac{\pi}{2}\right|$ is not in the set, since $\sin(\pi)=0\neq 2.$ 1 $2\left\lfloor \frac{\pi/2}{1} \right\rfloor = \left\lfloor \frac{\pi}{2} \right\rfloor$ 1 $\left\lfloor \frac{\pi}{2} \right\rfloor$ is not in the set, since $\sin(\pi) = 0 \neq 2$

Property (2) doesn't hold either.

Subspaces associated with matrices

 $\bf Theorem~3.21:$ Let A be an $m\times n$ matrix and let N be the set of solutions of the homogeneous system $A\vec{x} = \vec{0}.$ Then N is a subspace of $\mathbb{R}^n.$

Proof: (1) Since $A\,\vec{0}_n = \vec{0}_m$, the zero vector $\vec{0}_n$ is in $N.$ (2) Let \vec{u} and \vec{v} be in N , so $A\vec{u}=\vec{0}$ and $A\vec{v}=\vec{0}.$ Then

$$
A(\vec{u}+\vec{v})=A\vec{u}+A\vec{v}=\vec{0}+\vec{0}=\vec{0}
$$

so $\vec{u} + \vec{v}$ is in $N.$ (3) If c is a scalar and \vec{u} is in N , then

$$
A(c\vec{u})=cA\vec{u}=c\,\vec{0}=\vec{0}
$$

so $c\vec{u}$ is in N . \Box

Aside: At this point, the book states **Theorem 3.22**, which says that every linear system has no solution, one solution or infinitely many solutions, and gives a proof of this. We already know this is true, using Theorem 2.2 from Section 2.2 (see Lecture 9). The proof given here is in a sense better, since it doesn't rely on knowing anything about row echelon form, but I won't use class time to cover it.

Spans and null spaces are the two main sources of subspaces.

Definition: Let A be an $m \times n$ matrix.

1. The row space of A is the subspace $\mathrm{row}(A)$ of \mathbb{R}^n spanned by the rows of A .

2. The column space of A is the subspace $\mathrm{col}(A)$ of \mathbb{R}^m spanned by the columns of A .

3. The **null space** of A is the subspace $\operatorname{null}(A)$ of \mathbb{R}^n consisting of the solutions to the system $A\vec{x}=\vec{0}.$

Example: The column space of
$$
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
$$
 is span $(\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix})$. A vector \vec{b} is a

linear combination of these columns if and only if the system $A\vec{x}=\vec{b}$ has a solution. But since A is invertible (its determinant is $4-6=-2\neq 0$), every such system has a (unique) solution. So $\mathrm{col}(A) = \mathbb{R}^2.$

The row space of A is the same as the column space of A^T , so by a similar argument, this is all of \mathbb{R}^2 as well.

Example: The column space of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is the span of the two columns, $\overline{}$ 1 3 5 2 4 6 \overline{a} \overline{a}

which is a subspace of $\mathbb{R}^3.$ Since the columns are linearly independent, this is a plane through the origin in $\mathbb{R}^3.$

Determine whether $|0|$ and $|0|$ are in $\text{col}(A)$. (On board.) \overline{a} $\overline{}$ 2 0 1 \overline{a} \overline{a} \overline{a} $\overline{}$ 2 0 -2 \overline{a} $\left| \right.$ are in $\text{col}(A)$

We will learn methods to describe the three subspaces associated to a matrix A .