Math 1600B Lecture 18, Section 2, 14 Feb 2014

Announcements:

Continue **reading** Section 3.5. We aren't covering 3.4. Work through recommended homework questions.

Midterm: It is Saturday, March 1, 6:30pm-9:30pm, one week after reading week. If you have a **conflict**, you must let me know this week. It will cover the material up to and including the lecture on Monday, Feb 24.

Four **practice midterms** have been posted on the course web page.

Office hour and tutorials: None during reading week. The tutorial after reading week will be for midterm review; no quiz.

Help Centers: Monday-Friday 2:30-6:30 in MC 106, but not during reading week.

Partial review of Section 3.3, Lectures 16 and 17:

Definition: An **inverse** of an $n \times n$ matrix A is an $n \times n$ matrix A' such that

$$AA' = I$$
 and $A'A = I$.

If such an A' exists, we say that A is **invertible**.

Theorem 3.6: If A is an invertible matrix, then its inverse is unique.

We write A^{-1} for **the** inverse of A, when A is invertible.

Theorem 3.8: The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$. When this is the case,

 $A^{-1} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix}.$

We call ad - bc the **determinant** of A, and write it det A.

Properties of Invertible Matrices

Theorem 3.9: Assume A and B are invertible matrices of the same size. Then:

a. A^{-1} is invertible and $(A^{-1})^{-1} = A$

b. If c is a non-zero scalar, then cA is invertible and $(cA)^{-1} = \frac{1}{c}A^{-1}$

c. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$ (socks and shoes rule)

d. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

e. A^n is invertible for all $n \ge 0$ and $(A^n)^{-1} = (A^{-1})^n$

Remark: There is no formula for $(A + B)^{-1}$. In fact, A + B might not be invertible, even if A and B are.

The fundamental theorem of invertible matrices:

Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let A be an $n \times n$ matrix. The following are equivalent:

a. A is invertible.

b. $A\vec{x} = \vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{R}^n$.

c. $A\vec{x} = \vec{0}$ has only the trivial (zero) solution.

d. The reduced row echelon form of A is I_n .

Theorem 3.13: Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

Gauss-Jordan method for computing the inverse

Theorem 3.14: Let A be a square matrix. If a sequence of row operations reduces A to I, then the **same** sequence of row operations transforms I into A^{-1} .

This gives a general purpose method for determining whether a matrix A is invertible, and finding the inverse:

1. Form the n imes 2n matrix $[A \mid I]$.

2. Use row operations to get it into reduced row echelon form.

3. If a zero row appears in the left-hand portion, then A is not invertible.

4. Otherwise, A will turn into I, and the right hand portion is A^{-1} .

True/false: If A and B are square matrices such that AB is not invertible, then at

least one of A and B is not invertible.

True/false: If A and B are matrices such that AB = I, then BA = I.

Question: Find invertible matrices A and B such that A + B is not invertible.

New material: Section 3.5: Subspaces, basis, dimension and rank

This section contains some of the most important concepts of the course.

Subspaces

A generalization of lines and planes through the origin.

Definition: A **subspace** of \mathbb{R}^n is any collection *S* of vectors in \mathbb{R}^n such that: 1. The zero vector $\vec{0}$ is in *S*.

2. S is closed under addition: If \vec{u} and \vec{v} are in S t

2. *S* is **closed under addition**: If \vec{u} and \vec{v} are in *S*, then $\vec{u} + \vec{v}$ is in *S*.

3. S is **closed under scalar multiplication**: If \vec{u} is in S and c is any scalar, then $c\vec{u}$ is in S.

Conditions (2) and (3) together are the same as saying that S is **closed under linear combinations**.

Example: \mathbb{R}^n is a subspace of \mathbb{R}^n . Also, $S = {\vec{0}}$ is a subspace of \mathbb{R}^n .

Example: A plane \mathcal{P} through the origin in \mathbb{R}^3 is a subspace. Applet.

Here's an algebraic argument. Suppose \vec{v}_1 and \vec{v}_2 are direction vectors for \mathcal{P} , so $\mathcal{P} = \operatorname{span}(\vec{v}_1, \vec{v}_2)$.

(1) $\vec{0}$ is in \mathcal{P} , since $\vec{0} = 0\vec{v}_1 + 0\vec{v}_2$. (2) If $\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2$ and $\vec{v} = d_1\vec{v}_1 + d_2\vec{v}_2$, then

$$egin{aligned} ec{u}+ec{v}&=(c_1ec{v}_1+c_2ec{v}_2)+(d_1ec{v}_1+d_2ec{v}_2)\ &=(c_1+d_1)ec{v}_1+(c_2+d_2)ec{v}_2 \end{aligned}$$

which is in ${\rm span}(ec v_1, ec v_2)$ as well. (3) For any scalar c,

$$cec{u} = c(c_1ec{v}_1 + c_2ec{v}_2) = (cc_1)ec{v}_1 + (cc_2)ec{v}_2$$

which is also in $\mathrm{span}(ec{v}_1, ec{v}_2).$

On the other hand, a plane **not** through the origin is not a subspace. It of course fails (1), but the other conditions fail as well, as shown in the applet.

As another example, a line through the origin in \mathbb{R}^3 is also a subspace.

The **same** method as used above proves:

Theorem 3.19: Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be vectors in \mathbb{R}^n . Then $\operatorname{span}(\vec{v}_1, \ldots, \vec{v}_k)$ is a subspace of \mathbb{R}^n .

See text. We call span $(\vec{v}_1, \ldots, \vec{v}_k)$ the **subspace spanned by** $\vec{v}_1, \ldots, \vec{v}_k$. This generalizes the idea of a line or a plane through the origin.

Example: Is the set of vectors
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 with $x = y + z$ a subspace of \mathbb{R}^3 ?
Here S is the set of all vectors of the form $\begin{bmatrix} y + z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. That is,
 $S = \operatorname{span}(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix})$, so it is a subspace.

Alternatively, one could check the properties:

(1) This holds with y = z = 0. (2) Since $\begin{bmatrix} y_1 + z_1 \\ y_1 \\ z_1 \end{bmatrix} + \begin{bmatrix} y_2 + z_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 + z_1 + y_2 + z_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{bmatrix}$ is of the right form, this condition holds. (3) Since $c \begin{bmatrix} y + z \\ y \\ z_2 \end{bmatrix} = \begin{bmatrix} cy + cz \\ cy \\ cz \end{bmatrix}$, this condition holds too.

This is geometrically a plane through the origin, so our previous discussion applies as well.

See Example 3.38 in the text for a similar question.

Example: Is the set of vectors
$$egin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 with $x=y+z+1$ a subspace of \mathbb{R}^3 ?

No, because it doesn't contain the zero vector. (The other properties don't hold either.)

Example: Is the set of vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ with $y = \sin(x)$ a subspace of \mathbb{R}^2 ?

It does contain the zero vector. Let's check condition (3): Consider a vector

 $\left\lfloor {x\atop \sin(x)}
ight
ceil$ in this set, and let c be a scalar. Then

 $cigg[x \\ \sin(x) \end{bmatrix} = igg[cx \\ c\sin(x) \end{bmatrix}$

and $c\sin(x)$ is not usually equal to $\sin(cx)$.

To show that this is false, we give an explicit counterexample:

 $\begin{bmatrix} \pi/2\\1 \end{bmatrix}$ is in the set, but $2\begin{bmatrix} \pi/2\\1 \end{bmatrix} = \begin{bmatrix} \pi\\2 \end{bmatrix}$ is not in the set, since $\sin(\pi) = 0 \neq 2$.

Property (2) doesn't hold either.

Subspaces associated with matrices

Theorem 3.21: Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous system $A\vec{x} = \vec{0}$. Then N is a subspace of \mathbb{R}^n .

Proof: (1) Since $A \vec{0}_n = \vec{0}_m$, the zero vector $\vec{0}_n$ is in N. (2) Let \vec{u} and \vec{v} be in N, so $A\vec{u} = \vec{0}$ and $A\vec{v} = \vec{0}$. Then

$$A(ec{u}+ec{v})=Aec{u}+Aec{v}=ec{0}+ec{0}=ec{0}$$

so $ec{u}+ec{v}$ is in N.(3) If c is a scalar and $ec{u}$ is in N, then

$$A(c\vec{u}) = cA\vec{u} = c\vec{0} = \vec{0}$$

so $c\vec{u}$ is in N. \Box

Aside: At this point, the book states **Theorem 3.22**, which says that every linear system has no solution, one solution or infinitely many solutions, and gives a proof of this. We already know this is true, using Theorem 2.2 from Section 2.2 (see Lecture 9). The proof given here is in a sense better, since it doesn't rely on knowing anything about row echelon form, but I won't use class time to cover it.

Spans and null spaces are the *two main* sources of subspaces.

Definition: Let A be an $m \times n$ matrix.

1. The **row space** of A is the subspace row(A) of \mathbb{R}^n spanned by the rows of A.

2. The **column space** of A is the subspace col(A) of \mathbb{R}^m spanned by the columns of A.

3. The **null space** of A is the subspace null(A) of \mathbb{R}^n consisting of the solutions to the system $A\vec{x} = \vec{0}$.

Example: The column space of
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is span $(\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix})$. A vector \vec{b} is a

linear combination of these columns if and only if the system $A\vec{x} = b$ has a solution. But since A is invertible (its determinant is $4 - 6 = -2 \neq 0$), every such system has a (unique) solution. So $col(A) = \mathbb{R}^2$.

The row space of A is the same as the column space of A^T , so by a similar argument, this is all of \mathbb{R}^2 as well.

Example: The column space of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ is the span of the two columns,

which is a subspace of \mathbb{R}^3 . Since the columns are linearly independent, this is a plane through the origin in \mathbb{R}^3 .

Determine whether $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are in $\operatorname{col}(A)$. (On board.)

We will learn methods to describe the three subspaces associated to a matrix A.