
Math 1600B Lecture 18, Section 2, 14 Feb 2014

Announcements:

Continue reading Section 3.5. We aren't covering 3.4. Work through
recommended homework questions.

Midterm: It is Saturday, March 1, 6:30pm-9:30pm, one week after reading week.
If you have a conflict, you must let me know this week. It will cover the material
up to and including the lecture on Monday, Feb 24.

Four practice midterms have been posted on the course web page.

Office hour and tutorials: None during reading week. The tutorial after reading
week will be for midterm review; no quiz.

Help Centers: Monday-Friday 2:30-6:30 in MC 106, but not during reading week.

Partial review of Section 3.3, Lectures 16 and 17:

Definition: An inverse of an  matrix  is an  matrix  such that

If such an  exists, we say that  is invertible.

Theorem 3.6: If  is an invertible matrix, then its inverse is unique.

We write  for the inverse of , when  is invertible.

Theorem 3.8: The matrix  is invertible if and only if .

When this is the case,

We call  the determinant of , and write it .

Properties of Invertible Matrices

n × n A n × n A′

A = I and A = I.A′ A′

A′ A

A

A−1 A A

A = [ ]a

c

b

d
ad − bc ≠ 0

= [ ].A−1 1
ad − bc

d

−c

−b

a

ad − bc A det A
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Theorem 3.9: Assume  and  are invertible matrices of the same size. Then:

 is invertible and a.

If  is a non-zero scalar, then  is invertible and b.

 is invertible and  (socks and shoes rule)c.

 is invertible and d.

 is invertible for all  and e.

Remark: There is no formula for . In fact,  might not be
invertible, even if  and  are.

The fundamental theorem of invertible matrices:

Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .

Theorem 3.13: Let  be a square matrix. If  is a square matrix such that either

 or , then  is invertible and .

Gauss-Jordan method for computing the inverse

Theorem 3.14: Let  be a square matrix. If a sequence of row operations reduces

 to , then the same sequence of row operations transforms  into .

This gives a general purpose method for determining whether a matrix  is
invertible, and finding the inverse:

1. Form the  matrix .

2. Use row operations to get it into reduced row echelon form.

3. If a zero row appears in the left-hand portion, then  is not invertible.

4. Otherwise,  will turn into , and the right hand portion is .

True/false: If  and  are square matrices such that  is not invertible, then at

A B

A−1 ( = AA−1)−1

c cA (cA =)−1 1
c

A−1

AB (AB =)−1
B−1A−1

AT ( = (AT )−1
A−1)T

An n ≥ 0 ( = (An)−1
A−1)n

(A + B)−1
A + B

A B

A n × n

A

A =x⃗ b ⃗ ∈b ⃗ Rn

A =x⃗ 0⃗ 
A In

A B

AB = I BA = I A B = A−1

A

A I I A−1

A

n × 2n [A ∣ I ]

A

A I A−1

A B AB
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least one of  and  is not invertible.

True/false: If  and  are matrices such that , then .

Question: Find invertible matrices  and  such that  is not invertible.

New material: Section 3.5: Subspaces, basis,
dimension and rank

This section contains some of the most important concepts of the course.

Subspaces

A generalization of lines and planes through the origin.

Definition: A subspace of  is any collection  of vectors in  such that:

1. The zero vector  is in .
2.  is closed under addition: If  and  are in , then  is in .
3.  is closed under scalar multiplication: If  is in  and  is any scalar, then

 is in .

Conditions (2) and (3) together are the same as saying that  is closed under
linear combinations.

Example:  is a subspace of . Also,  is a subspace of .

Example: A plane  through the origin in  is a subspace. Applet.

Here's an algebraic argument. Suppose  and  are direction vectors for , so
.

(1)  is in , since .
(2) If  and , then

which is in  as well.
(3) For any scalar ,

which is also in .

A B

A B AB = I BA = I

A B A + B

Rn S Rn

0⃗ S

S u⃗ v ⃗ S +u⃗ v ⃗ S

S u⃗ S c

cu⃗ S

S

Rn Rn S = { }0⃗ Rn

P R3

v ⃗ 1 v ⃗ 2 P
P = span( , )v ⃗ 1 v ⃗ 2

0⃗ P = 0 + 00⃗ v ⃗ 1 v ⃗ 2
= +u⃗ c1v ⃗ 1 c2v ⃗ 2 = +v ⃗ d1v ⃗ 1 d2v ⃗ 2

+u⃗ v ⃗ = ( + ) + ( + )c1v ⃗ 1 c2v ⃗ 2 d1v ⃗ 1 d2v ⃗ 2
= ( + ) + ( + )c1 d1 v ⃗ 1 c2 d2 v ⃗ 2

span( , )v ⃗ 1 v ⃗ 2
c

c = c( + ) = (c ) + (c )u⃗ c1v ⃗ 1 c2v ⃗ 2 c1 v ⃗ 1 c2 v ⃗ 2

span( , )v ⃗ 1 v ⃗ 2
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On the other hand, a plane not through the origin is not a subspace. It of course
fails (1), but the other conditions fail as well, as shown in the applet.

As another example, a line through the origin in  is also a subspace.

The same method as used above proves:

Theorem 3.19: Let  be vectors in . Then  is a
subspace of .

See text. We call  the subspace spanned by . This
generalizes the idea of a line or a plane through the origin.

Example: Is the set of vectors  with  a subspace of ?

Here  is the set of all vectors of the form . That is,

, so it is a subspace.

Alternatively, one could check the properties:
(1) This holds with .

(2) Since  is of the right form, this

condition holds.

(3) Since , this condition holds too.

This is geometrically a plane through the origin, so our previous discussion applies
as well.

See Example 3.38 in the text for a similar question.

Example: Is the set of vectors  with  a subspace of ?

R3

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ k Rn span( , … , )v ⃗ 1 v ⃗ k
Rn

span( , … , )v ⃗ 1 v ⃗ k , … ,v ⃗ 1 v ⃗ k

⎡
⎣

x

y

z

⎤
⎦ x = y + z R3

S = y + z
⎡
⎣

y + z

y

z

⎤
⎦

⎡
⎣

1
1
0

⎤
⎦

⎡
⎣

1
0
1

⎤
⎦

S = span( , )
⎡
⎣

1
1
0

⎤
⎦

⎡
⎣

1
0
1

⎤
⎦

y = z = 0

+ =
⎡
⎣

+y1 z1

y1
z1

⎤
⎦

⎡
⎣

+y2 z2

y2
z2

⎤
⎦

⎡
⎣

+ + +y1 z1 y2 z2

+y1 y2
+z1 z2

⎤
⎦

c =
⎡
⎣

y + z

y

z

⎤
⎦

⎡
⎣

cy + cz

cy

cz

⎤
⎦

⎡
⎣

x

y

z

⎤
⎦ x = y + z + 1 R3
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No, because it doesn't contain the zero vector. (The other properties don't hold
either.)

Example: Is the set of vectors  with  a subspace of ?

It does contain the zero vector. Let's check condition (3): Consider a vector

 in this set, and let  be a scalar. Then

and  is not usually equal to .
To show that this is false, we give an explicit counterexample:

 is in the set, but  is not in the set, since .

Property (2) doesn't hold either.

Subspaces associated with matrices

Theorem 3.21: Let  be an  matrix and let  be the set of solutions of the

homogeneous system . Then  is a subspace of .

Proof: (1) Since , the zero vector  is in .

(2) Let  and  be in , so  and . Then

so  is in .
(3) If  is a scalar and  is in , then

so  is in . 

Aside: At this point, the book states Theorem 3.22, which says that every linear
system has no solution, one solution or infinitely many solutions, and gives a proof
of this. We already know this is true, using Theorem 2.2 from Section 2.2 (see
Lecture 9). The proof given here is in a sense better, since it doesn't rely on
knowing anything about row echelon form, but I won't use class time to cover it.

[ ]x

y
y = sin(x) R2

[ ]x

sin(x)
c

c[ ] = [ ]x

sin(x)
cx

c sin(x)

c sin(x) sin(cx)

[ ]π/2
1

2[ ] = [ ]π/2
1

π

2
sin(π) = 0 ≠ 2

A m × n N

A =x⃗ 0⃗ N Rn

A =0⃗ 
n 0⃗ 

m 0⃗ 
n N

u⃗ v ⃗ N A =u⃗ 0⃗ A =v ⃗ 0⃗ 

A( + ) = A + A = + =u⃗ v ⃗ u⃗ v ⃗ 0⃗ 0⃗ 0⃗ 

+u⃗ v ⃗ N

c u⃗ N

A(c ) = cA = c =u⃗ u⃗ 0⃗ 0⃗ 

cu⃗ N □
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Spans and null spaces are the two main sources of subspaces.

Definition: Let  be an  matrix.

1. The row space of  is the subspace  of  spanned by the rows of .
2. The column space of  is the subspace  of  spanned by the columns
of .
3. The null space of  is the subspace  of  consisting of the solutions to

the system .

Example: The column space of  is . A vector  is a

linear combination of these columns if and only if the system  has a
solution. But since  is invertible (its determinant is ), every such
system has a (unique) solution. So .

The row space of  is the same as the column space of , so by a similar
argument, this is all of  as well.

Example: The column space of  is the span of the two columns,

which is a subspace of . Since the columns are linearly independent, this is a
plane through the origin in .

Determine whether  and  are in . (On board.)

We will learn methods to describe the three subspaces associated to a matrix .

A m × n

A row(A) Rn A

A col(A) Rm

A

A null(A) Rn

A =x⃗ 0⃗ 

A = [ ]1
3

2
4

span([ ], [ ])1
3

2
4

b ⃗ 

A =x⃗ b ⃗ 
A 4 − 6 = −2 ≠ 0

col(A) = R2

A AT

R2

A =
⎡
⎣

1
3
5

2
4
6

⎤
⎦

R3

R3

⎡
⎣

2
0
1

⎤
⎦

⎡
⎣

2
0

−2

⎤
⎦ col(A)

A
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