Math 1600B Lecture 2, Section 2, 8 Jan 2014

Announcements:

Read Section 1.2 for next class. Work through homework problems.

Lecture notes (this page) available from course web page. Also look for **announcements** there.

Office hour: today, 2:30-3:30, MC103B. Drop with any questions!

No tutorials this week. There is a quiz in tutorials next week.

Please **read over syllabus**, especially before e-mailing me with questions, as it covers all of the main points.

Let me know if the bookstore runs out of **texts or combo packs**.

Review of last lecture:

A vector can be represented by its list of components, e.g. $\left[1, 2, -1\right]$ is a vector in \mathbb{R}^3 .

We write \mathbb{R}^n for the set of all vectors with n real components, e.g. $[1, 2, 3, 4, 5, 6, 7]$ is in \mathbb{R}^7 .

We also often write vectors as column vectors, e.g. $\begin{array}{|c|c|} \hline 1 & 1 \ \hline 2 & \end{array}$ 2

 $\textbf{Vector addition:} \; [u_1, \ldots, u_n] + [v_1, \ldots, v_n] := [u_1 + v_1, \ldots, u_n + v_n].$ E.g. $\left[3,2,1\right] +\left[1,0,-1\right] =\left[4,2,0\right] .$

 ${\sf Scalar}$ multiplication: $c[u_1, \ldots, u_n] := [cu_1, \ldots, cu_n].$

E.g. $2[1,2,3,4,5]=\left[2,4,6,8,10\right]$.

Zero vector: $\vec{0} := [0, 0, \ldots, 0].$

Properties of vector operations: The parallelogram shows geometrically that vector addition is *commutative*: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Many other properties that hold for real numbers also hold for vectors: Theorem 1.1. But we'll see differences later.

New material:

An important real-world application:

Pac-Man: Google's version, and How the ghosts move.

Derive an equation for Inky's target on board.

Section 1.1, continued: Linear combinations

 ${\bf Definition:}$ A vector \vec{v} is a linear combination of vectors $\vec{v}_1,\,\vec{v}_2,\ldots,\,\vec{v}_k$ if there are scalars c_1, c_2, \ldots, c_k so that

$$
\vec{v}=c_1\,\vec{v}_1+\cdots+c_k\,\vec{v}_k.
$$

The numbers c_1, \ldots, c_k are called the coefficients. They are not necessarily unique.

Example: Is
$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$
 a linear combination of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$?

Yes, since

$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
 (Check!)

Note: We also have

$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
 (Check!)

and many more possibilities.

We will learn later how to find all solutions.

Example: Is
$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$
 a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$?
No, since any linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ has a zero as the second component.

Example: Is
$$
\begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
 a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$?

Yes. The zero vector is a linear combination of any set of vectors, since you can just take $c_1 = c_2 = \cdots = c_k = 0$.

Coordinates

Example: Express
$$
\vec{w}_1 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}
$$
 as a linear combination of $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

We can solve this by using \vec{u} and \vec{v} to make a new coordinate system in the plane. Use the board to show that $\,\vec{w}_1 = 2 \, \vec{u} + \vec{v}.$

Similarly, show that
$$
\vec{w}_2 = \begin{bmatrix} 4 \\ -1 \end{bmatrix}
$$
 can be expressed as $\vec{w}_2 = \vec{u} - 2\vec{v}$.

Note that in this case the coefficients are unique. In this situation, the coefficients are called the **coordinates** with respect to \vec{u} and \vec{v} . So the coordinates of \vec{w}_1 with respect to \vec{u} and \vec{v} are 2 and 1 , and the coordinates of \vec{w}_2 with respect to \vec{u} and \vec{v} are 1 and $-2.$

Working in a different coordinate system is a powerful tool.

Binary vectors

 $\mathbb{Z}_2 := \{0,1\}$

Multiplication is as usual.

Addition: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$.

 $\mathbb{Z}_2^n :=$ vectors with n components in $\mathbb{Z}_2.$

E.g. $[0,1,1,0,1]\in\mathbb{Z}_2^5.$

 $[0,1,1] + [1,1,0] = [1,0,1]$ in $\mathbb{Z}_2^3.$

There are 2^n vectors in $\mathbb{Z}_2^n.$

Ternary vectors

 $\mathbb{Z}_3 := \{0, 1, 2\}$

To add and multiply, always take the remainder modulo 3 at the end.

E.g. $2+2=4=1\cdot 3+1$, so $2+2=1 \pmod 3$.

We write $\pmod 3$ to indicate we are working in $\mathbb{Z}_3.$

Similarly, $1+2=0 \pmod{3}$ and $2\cdot 2=1 \pmod{3}$.

 $\mathbb{Z}_3^n :=$ vectors with n components in $\mathbb{Z}_3.$

 $[0,1,2]+[1,2,2]=[1,0,1]$ in $\mathbb{Z}_3^3.$

There are 3^n vectors in $\mathbb{Z}_3^n.$

Vectors in \mathbb{Z}_m^n

 $\mathbb{Z}_m:=\{0,1,2,\ldots,m-1\}$ with addition and multiplication modulo $m.$

E.g., in \mathbb{Z}_{10} , $\quad 8 \cdot 8 = 64 = 4 \pmod{10}$.

 $\mathbb{Z}_m^n := \text{vectors with } n \text{ components in } \mathbb{Z}_m.$

To find solutions to an equation such as

 $6x = 6 \pmod{8}$

you can simply try all possible values of $x.$ In this case, 1 and 5 both work, and no other value works.

Note that you can not in general **divide** in \mathbb{Z}_m , only add, subtract and multiply. For example, there is no solution to the following equation:

 $2x = 1 \pmod{4}$

But there is a solution to

 $2x = 1 \pmod{5}$,

namely $x=3$

Question: In \mathbb{Z}_5 , what is -2 ?

Example 1.40 (UPC Codes): The Univeral Product Code (bar code) on a product is a vector in \mathbb{Z}_{10}^{12} , such as

 $\vec{u} = [6, 7, 1, 8, 6, 0, 0, 1, 3, 6, 2, 4].$

In Section 1.4, we will learn how error detection works for codes like this.

