Math 1600B Lecture 2, Section 2, 8 Jan 2014

Announcements:

Read Section 1.2 for next class. Work through homework problems.

Lecture notes (this page) available from course web page. Also look for **announcements** there.

Office hour: today, 2:30-3:30, MC103B. Drop with any questions!

No tutorials this week. There is a quiz in tutorials next week.

Please **read over syllabus**, especially before e-mailing me with questions, as it covers all of the main points.

Let me know if the bookstore runs out of **texts or combo packs**.

Review of last lecture:

A vector can be represented by its list of components, e.g. [1,2,-1] is a vector in $\mathbb{R}^3.$

We write \mathbb{R}^n for the set of all vectors with n real components, e.g. [1, 2, 3, 4, 5, 6, 7] is in \mathbb{R}^7 .

We also often write vectors as column vectors, e.g. $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Vector addition: $[u_1,\ldots,u_n]+[v_1,\ldots,v_n]:=[u_1+v_1,\ldots,u_n+v_n].$ E.g. [3,2,1]+[1,0,-1]=[4,2,0].

Scalar multiplication: $c[u_1,\ldots,u_n]:=[cu_1,\ldots,cu_n]$.

 $\mathsf{E.g.}\ 2[1,2,3,4,5] = [2,4,6,8,10].$

Zero vector: $\vec{0} := [0, 0, \dots, 0]$.

Properties of vector operations: The parallelogram shows geometrically that vector addition is *commutative*: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Many other properties that hold for real numbers also hold for vectors: Theorem 1.1. But we'll see differences later.

New material:

An important real-world application:

Pac-Man: Google's version, and How the ghosts move.

Derive an equation for Inky's target on board.

Section 1.1, continued: Linear combinations

Definition: A vector \vec{v} is a **linear combination** of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ if there are scalars c_1, c_2, \ldots, c_k so that

$$ec v = c_1 \, ec v_1 + \dots + c_k \, ec v_k.$$

The numbers c_1, \ldots, c_k are called the coefficients. They are not necessarily unique.

Example: Is
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$?

Yes, since

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
(Check!)

Note: We also have

$$\begin{bmatrix} 1\\ -1 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 1\\ 1 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 2\\ -1 \end{bmatrix} + 0 \begin{bmatrix} 0\\ 1 \end{bmatrix}$$
(Check!)

and many more possibilities.

We will learn later how to find all solutions.

Example: Is
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$?
No, since any linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ has a zero as the second component.

Example: Is
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$?

Yes. The zero vector is a linear combination of *any* set of vectors, since you can just take $c_1 = c_2 = \cdots = c_k = 0$.

Coordinates

Example: Express
$$\vec{w}_1 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
 as a linear combination of $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

We can solve this by using \vec{u} and \vec{v} to make a new coordinate system in the plane. Use the board to show that $\vec{w}_1 = 2 \, \vec{u} + \, \vec{v}$.

Similarly, show that
$$ec{w}_2=iggl(egin{array}{c} 4 \ -1 \end{bmatrix}$$
 can be expressed as $ec{w}_2=ec{u}-2\,ec{v}.$

Note that in this case the coefficients are unique. In this situation, the coefficients are called the **coordinates** with respect to \vec{u} and \vec{v} . So the coordinates of \vec{w}_1 with respect to \vec{u} and \vec{v} are 2 and 1, and the coordinates of \vec{w}_2 with respect to \vec{u} and \vec{v} are 1 and -2.

Working in a different coordinate system is a powerful tool.

Binary vectors

 $\mathbb{Z}_2:=\{0,1\}$

Multiplication is as usual.

Addition: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0.

 $\mathbb{Z}_2^n :=$ vectors with n components in \mathbb{Z}_2 .

E.g. $[0,1,1,0,1]\in \mathbb{Z}_2^5.$

 $[0,1,1]+[1,1,0]=[1,0,1] \text{ in } \mathbb{Z}_2^3.$

There are 2^n vectors in \mathbb{Z}_2^n .

Ternary vectors

 $\mathbb{Z}_3 := \{0,1,2\}$

To add and multiply, always take the remainder modulo 3 at the end.

E.g. $2+2=4=1\cdot 3+1$, so $2+2=1 \pmod{3}$.

We write (mod 3) to indicate we are working in \mathbb{Z}_3 .

Similarly, $1+2=0 \pmod{3}$ and $2\cdot 2=1 \pmod{3}$.

 $\mathbb{Z}_3^n :=$ vectors with n components in \mathbb{Z}_3 .

[0,1,2]+[1,2,2]=[1,0,1] in $\mathbb{Z}_3^3.$

There are 3^n vectors in \mathbb{Z}_3^n .

Vectors in \mathbb{Z}_m^n

 $\mathbb{Z}_m := \{0,1,2,\ldots,m-1\}$ with addition and multiplication modulo m.

E.g., in \mathbb{Z}_{10} , $8 \cdot 8 = 64 = 4 \pmod{10}$.

 $\mathbb{Z}_m^n :=$ vectors with n components in $\mathbb{Z}_m.$

To find solutions to an equation such as

 $6x = 6 \pmod{8}$

you can simply try all possible values of x. In this case, 1 and 5 both work, and no other value works.

Note that you can not in general **divide** in \mathbb{Z}_m , only add, subtract and multiply. For example, there is no solution to the following equation:

 $2x = 1 \pmod{4}$

But there is a solution to

 $2x=1 \pmod{5},$

namely x=3

Question: In \mathbb{Z}_5 , what is -2?

Example 1.40 (UPC Codes): The Universal Product Code (bar code) on a product is a vector in \mathbb{Z}_{10}^{12} , such as

 $ec{u} = [6, 7, 1, 8, 6, 0, 0, 1, 3, 6, 2, 4].$

In Section 1.4, we will learn how error detection works for codes like this.

