
Math 1600B Lecture 21, Section 2, 28 Feb 2014

Announcements:

Read Markov chains part of Section 3.7 for next class. Work through
recommended homework questions (and check for updates).

Extra Midterm Review: Today, 4:30-6:00pm, MC110. Bring questions.

Midterm location is based on first letter of last name: HSB35 A-H,
HSB236 I-Q, HSB240 R-Z. Be sure to write in the correct room!

Midterm: Saturday, March 1, 6:30pm-9:30pm. It will cover the material up
to and including Monday's lecture, but not electrical networks. Practice
midterms are on the website. See the missed exam section of the course
web page for policies, including for illness.

Tutorials: Quiz next week covers 3.5 and 3.6.

Help Centers: Monday-Friday 2:30-6:30 in MC106.

New material: Section 3.5: Coordinates

Suppose  is a subspace of  with a basis , so  has
dimension . Then we can assign coordinates to vectors in , using the
following theorem:

Theorem 3.29: For every vector  in , there is exactly one way to write 
as a linear combination of the vectors in :

Proof: Try to work it out yourself! It's a good exercise.

We call the coefficients  the coordinates of  with respect
to , and write
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We already intuitively understood this theorem in the case where  is a

plane through the origin in . Here's an example of this case:

Example: Let  be the plane through the origin in  spanned by

 and , so  is a basis for . Let

. Then

Note that while  is a vector in , it only has two coordinates with respect
to .

We already know how to find the coordinates. For this example, we would
solve the system

Example: Let  be the standard basis for , and consider

. Then

[ =v ⃗ ]B

⎡
⎣
⎢⎢⎢

c1

c2

⋮
ck

⎤
⎦
⎥⎥⎥

S

R3

S R3

=v ⃗ 1
⎡
⎣

1
2
3

⎤
⎦ =v ⃗ 2

⎡
⎣

4
5
6

⎤
⎦ B = { , }v ⃗ 1 v ⃗ 2 S

=v ⃗ 
⎡
⎣

6
9

12

⎤
⎦

= 2 + 1 so [ = [ ]v ⃗ v ⃗ 1 v ⃗ 2 v ⃗ ]B
2
1

v ⃗ R3

B

[ ] =
⎡
⎣

1
2
3

4
5
6

⎤
⎦ c1

c2

⎡
⎣

6
9

12

⎤
⎦

B = { , , }e ⃗ 1 e ⃗ 2 e ⃗ 3 R3

=v ⃗ 
⎡
⎣

6
9

12

⎤
⎦



We've implicitly been using the standard basis everywhere, but often in
applications it is better to use a basis suited to the problem.

Section 3.6: Linear Transformations

Given an  matrix , we can use  to transform a column vector in
 into a column vector in . We write:

Example: If  then

In general (omitting parentheses),

Note that the matrix  is visible in the last expression.

Any rule  that assigns to each  in  a unique vector  in  is
called a transformation from  to  and is written .

For our  above, we have .  is in fact a linear
transformation.

Definition: A transformation  is called a linear
transformation if:
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2.  for all  in  and all scalars .

You can check directly that our  is linear. For example,

Check condition (1) yourself, or see Example 3.55.

In fact, every  is linear:

Theorem 3.30: Let  be an  matrix. Then  is a linear
transformation.

Proof: Let  and  be vectors in  and let . Then

and

Example 3.56: Let  be the transformation that sends each
point to its reflection in the -axis. Show that  is linear.

Solution: Give a geometrical explanation on the board.

Algebraically, note that , from which you can check

directly that  is linear. (Exercise.)

Or, observe that , so  where

.

Example: Let  be the transformation
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Is  linear?

Solution: No. For example,  but

.

It turns out that every linear transformation is a matrix transformation.

Theorem 3.31: Let  be a linear transformation. Then
, where

Proof: We just check:

The matrix  is called the standard matrix of  and is written .

Example 3.58: Let  be rotation by an angle 
counterclockwise about the origin. Show that  is linear and find its
standard matrix.

Solution: A geometric argument shows that  is linear. On board.

To find the standard matrix, we note that
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Therefore, the standard matrix of  is .

Now that we know the matrix, we can compute rotations of arbitrary
vectors. For example, to rotate the point  by :

Rotations will be one of our main examples.

New linear transformations from old

If  and , then  makes sense for  in
. The composition of  and  is the transformation 

defined by

If  and  are linear, it is easy to check that this new transformation 
is automatically linear. For example,

Any guesses for how the the matrix for  is related to the matrices for
 and ?

Theorem 3.32: , where  is used to denote the matrix of
a linear transformation.

Proof: Let  and . Then
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so . 

It's because of this that matrix multiplication is defined how it is! Notice also
that the condition on the sizes of matrices in a product matches the
requirement that  and  be composable.
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