Math 1600B Lecture 21, Section 2, 28 Feb 2014

Announcements:

Read Markov chains part of Section 3.7 for next class. Work through recommended homework questions (and check for updates).

Extra Midterm Review: Today, 4:30-6:00pm, MC110. Bring questions.

Midterm location is based on first letter of last name: HSB35 A-H, HSB236 I-Q, HSB240 R-Z. Be sure to write in the correct room!

Midterm: Saturday, March 1, 6:30pm-9:30pm. It will cover the material up to and including Monday's lecture, but not electrical networks. **Practice midterms** are on the website. See the missed exam section of the course web page for policies, including for illness.

Tutorials: Quiz next week covers 3.5 and 3.6.

Help Centers: Monday-Friday 2:30-6:30 in MC106.

New material: Section 3.5: Coordinates

Suppose S is a subspace of \mathbb{R}^n with a basis $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_k\}$, so S has dimension k. Then we can assign **coordinates** to vectors in S, using the following theorem:

Theorem 3.29: For every vector v in S, there is *exactly one way* to write v as a linear combination of the vectors in \mathcal{B} :

 $ec{v} = c_1 ec{v}_1 + \dots + c_k ec{v}_k$

Proof: Try to work it out yourself! It's a good exercise. \Box

We call the coefficients c_1, c_2, \ldots, c_k the coordinates of \vec{v} with respect to \mathcal{B} , and write

$$[ec{v}]_{\mathcal{B}} = egin{bmatrix} c_1 \ c_2 \ dots \ c_k \end{bmatrix}$$

We already intuitively understood this theorem in the case where S is a plane through the origin in \mathbb{R}^3 . Here's an example of this case:

Example: Let
$$S$$
 be the plane through the origin in \mathbb{R}^3 spanned by $\vec{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 4\\5\\6 \end{bmatrix}$, so $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$ is a basis for S . Let $\vec{v} = \begin{bmatrix} 6\\9\\12 \end{bmatrix}$. Then
 $\vec{v} = 2\vec{v}_1 + 1\vec{v}_2$ so $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$

Note that while \vec{v} is a vector in \mathbb{R}^3 , it only has **two** coordinates with respect to \mathcal{B} .

We already know how to find the coordinates. For this example, we would solve the system

$$egin{bmatrix} 1 & 4 \ 2 & 5 \ 3 & 6 \end{bmatrix} egin{bmatrix} c_1 \ c_2 \end{bmatrix} = egin{bmatrix} 6 \ 9 \ 12 \end{bmatrix}$$

Example: Let $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ be the standard basis for \mathbb{R}^3 , and consider $\vec{v} = \begin{bmatrix} 6\\9\\12 \end{bmatrix}$. Then

$$ec{v}=6ec{e}_1+9ec{e}_2+12ec{e}_3 \qquad ext{so} \qquad [ec{v}]_{\mathcal{B}}=egin{bmatrix}6\\9\\12\end{bmatrix}$$

We've implicitly been using the standard basis everywhere, but often in applications it is better to use a basis suited to the problem.

Section 3.6: Linear Transformations

Given an $m \times n$ matrix A, we can use A to transform a column vector in \mathbb{R}^n into a column vector in \mathbb{R}^m . We write:

 $T_A(ec x) = Aec x \quad ext{for } ec x ext{ in } \mathbb{R}^n$

Example: If $A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}$ then

$$T_A\left(\begin{bmatrix}-1\\2\end{bmatrix}\right) = A\begin{bmatrix}-1\\2\end{bmatrix} = \begin{bmatrix}0&1\\2&3\\4&5\end{bmatrix}\begin{bmatrix}-1\\2\end{bmatrix} = -1\begin{bmatrix}0\\2\\4\end{bmatrix} + 2\begin{bmatrix}1\\3\\5\end{bmatrix} = \begin{bmatrix}2\\4\\6\end{bmatrix}$$

In general (omitting parentheses),

$$T_Aigg[rac{x}{y}igg] = Aigg[rac{x}{y}igg] = igg[egin{array}{c} 0 & 1 \ 2 & 3 \ 4 & 5 \end{array} igg[rac{x}{y}igg] = xigg[egin{array}{c} 0 \ 2 \ 4 \ \end{bmatrix} + yigg[egin{array}{c} 1 \ 3 \ 5 \ \end{bmatrix} = igg[rac{y}{2x+3y} \ 4x+5y \end{array} igg]$$

Note that the matrix A is visible in the last expression.

Any rule T that assigns to each \vec{x} in \mathbb{R}^n a unique vector $T(\vec{x})$ in \mathbb{R}^m is called a **transformation** from \mathbb{R}^n to \mathbb{R}^m and is written $T: \mathbb{R}^n \to \mathbb{R}^m$.

For our A above, we have $T_A: \mathbb{R}^2 \to \mathbb{R}^3$. T_A is in fact a *linear* transformation.

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a **linear** transformation if:

1. $T(ec{u}+ec{v})=T(ec{u})+T(ec{v})$ for all $ec{u}$ and $ec{v}$ in \mathbb{R}^n , and

2. $T(cec{u})=c\,T(ec{u})$ for all $ec{u}$ in \mathbb{R}^n and all scalars c.

You can check directly that our T_A is linear. For example,

$$T_Aig(cigg[x \ y igg]ig) = T_Aigg[cx \ cy \ 2cx+3cy \ 4cx+5cy igg] = cigg[2x+3y \ 4x+5y igg] = c\,T_Aigg(igg[x \ y igg]igg)$$

Check condition (1) yourself, or see Example 3.55.

In fact, every T_A is linear:

Theorem 3.30: Let A be an m imes n matrix. Then $T_A: \mathbb{R}^n o \mathbb{R}^m$ is a linear transformation.

Proof: Let $ec{u}$ and $ec{v}$ be vectors in \mathbb{R}^n and let $c\in\mathbb{R}.$ Then

$$T_A(ec{u}+ec{v})=A(ec{u}+ec{v})=Aec{u}+Aec{v}=T_A(ec{u})+T_A(ec{v})$$

and

$$T_A(cec{u}) = A(cec{u}) = c\,Aec{u} = c\,T_A(ec{u}) \qquad \square$$

Example 3.56: Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that sends each point to its reflection in the *x*-axis. Show that *F* is linear.

Solution: Give a geometrical explanation on the board.

Algebraically, note that $F(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ -y \end{bmatrix}$, from which you can check directly that F is linear. (Exercise.)

Or, observe that
$$F(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
, so $F = T_A$ where $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Example: Let $N: \mathbb{R}^2
ightarrow \mathbb{R}^2$ be the transformation

$$Niggl[x \ y iggr] := iggl[xy \ x+y iggr]$$

Is N linear?

Solution: No. For example,
$$N \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 but $N(2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}) = N \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \neq 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$

It turns out that *every* linear transformation is a matrix transformation.

Theorem 3.31: Let $T: \mathbb{R}^n o \mathbb{R}^m$ be a linear transformation. Then $T=T_A$, where

$$A = \left[\left. T(\vec{e}_1) \right| \left. T(\vec{e}_2) \right| \cdots \left| \left. T(\vec{e}_n) \right. \right] \right]$$

Proof: We just check:

$$egin{aligned} T(ec{x}) &= T(x_1ec{e}_1 + \dots + x_nec{e}_n) \ &= x_1T(ec{e}_1) + \dots + x_nT(ec{e}_n) & ext{since } T ext{ is linear} \ &= \left[\left. T(ec{e}_1) \mid T(ec{e}_2) \mid \dots \mid T(ec{e}_n)
ight] \left[egin{aligned} x_1 \ dc{e}_n \ dc{e}_n \end{array}
ight] \left[egin{aligned} x_1 \ dc{e}_n \ dc{e}_n \end{array}
ight] &= Aec{x} = T_A(ec{x}) & \Box \end{aligned}$$

The matrix A is called the **standard matrix** of T and is written [T].

Example 3.58: Let $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by an angle θ counterclockwise about the origin. Show that R_{θ} is linear and find its standard matrix.

Solution: A geometric argument shows that R_{θ} is linear. On board.

To find the standard matrix, we note that

$$R_{\theta} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta\\ \sin \theta \end{bmatrix} \text{ and } R_{\theta} \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta\\ \cos \theta \end{bmatrix}$$

Therefore, the standard matrix of R_{θ} is $\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{bmatrix}$.

Now that we know the matrix, we can compute rotations of arbitrary vectors. For example, to rotate the point (2,-1) by 60° :

$$egin{aligned} R_{60} egin{bmatrix} 2 \ -1 \end{bmatrix} &= egin{bmatrix} \cos 60^\circ & -\sin 60^\circ \ \sin 60^\circ & \cos 60^\circ \end{bmatrix} egin{bmatrix} 2 \ -1 \end{bmatrix} \ &= egin{bmatrix} 1/2 & -\sqrt{3}/2 \ \sqrt{3}/2 & 1/2 \end{bmatrix} egin{bmatrix} 2 \ -1 \end{bmatrix} = egin{bmatrix} (2+\sqrt{3})/2 \ (2\sqrt{3}-1)/2 \end{bmatrix} \end{aligned}$$

Rotations will be one of our main examples.

New linear transformations from old

If $T: \mathbb{R}^m \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^p$, then $S(T(\vec{x}))$ makes sense for \vec{x} in \mathbb{R}^m . The **composition** of S and T is the transformation $S \circ T: \mathbb{R}^m \to \mathbb{R}^p$ defined by

$$(S \circ T)(ec{x}) = S(T(ec{x})).$$

If S and T are linear, it is easy to check that this new transformation $S\circ T$ is automatically linear. For example,

$$egin{aligned} (S \circ T)(ec{u} + ec{v}) &= S(T(ec{u} + ec{v})) = S(T(ec{u}) + T(ec{v})) \ &= S(T(ec{u})) + S(T(ec{v})) = (S \circ T)(ec{u}) + (S \circ T)(ec{v}). \end{aligned}$$

Any guesses for how the the matrix for $S \circ T$ is related to the matrices for S and T?

Theorem 3.32: $[S \circ T] = [S][T]$, where $[\]$ is used to denote the matrix of a linear transformation.

Proof: Let A = [S] and B = [T]. Then

$$(S\circ T)(ec x)=S(T(ec x))=S(Bec x)=A(Bec x)=(AB)ec x$$
so $[S\circ T]=AB.$

It's because of this that matrix multiplication is defined how it is! Notice also that the condition on the sizes of matrices in a product matches the requirement that S and T be composable.