Math 1600B Lecture 21, Section 2, 28 Feb 2014

Announcements:

Read Markov chains part of Section 3.7 for next class. Work through recommended homework questions (and check for updates).

Extra Midterm Review: Today, 4:30-6:00pm, MC110. Bring questions.

Midterm location is based on first letter of last name: HSB35 A-H, HSB236 I-Q, HSB240 R-Z. Be sure to write in the correct room!

Midterm: Saturday, March 1, 6:30pm-9:30pm. It will cover the material up to and including Monday's lecture, but not electrical networks. **Practice midterms** are on the website. See the missed exam section of the course web page for policies, including for illness.

Tutorials: Quiz next week covers 3.5 and 3.6.

Help Centers: Monday-Friday 2:30-6:30 in MC106.

New material: Section 3.5: Coordinates

Suppose S is a subspace of \mathbb{R}^n with a basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_k\}$, so S has dimension $k.$ Then we can assign ${\sf coordinates}$ to vectors in S , using the following theorem:

Theorem 3.29: For every vector v in S , there is *exactly one way* to write v as a linear combination of the vectors in ${\cal B}$:

 $\vec{v} = c_1 \vec{v}_1 + \cdots + c_k \vec{v}_k$

Proof: Try to work it out yourself! It's a good exercise. □

We call the coefficients c_1, c_2, \ldots, c_k the **coordinates of** \vec{v} **with respect to** \mathcal{B} , and write

$$
[\vec{v}]_\mathcal{B} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}
$$

We already intuitively understood this theorem in the case where S is a plane through the origin in \mathbb{R}^3 . Here's an example of this case:

Example: Let *S* be the plane through the origin in
$$
\mathbb{R}^3
$$
 spanned by
\n
$$
\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \text{ and } \vec{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \text{ so } \mathcal{B} = \{\vec{v}_1, \vec{v}_2\} \text{ is a basis for } S. \text{ Let}
$$
\n
$$
\vec{v} = \begin{bmatrix} 6 \\ 9 \\ 12 \end{bmatrix}. \text{ Then}
$$
\n
$$
\vec{v} = 2\vec{v}_1 + 1\vec{v}_2 \qquad \text{so} \qquad [\vec{v}]_B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
$$

Note that while \vec{v} is a vector in \mathbb{R}^3 , it only has $\sf two$ coordinates with respect to \mathcal{B} .

We already know how to find the coordinates. For this example, we would solve the system

$$
\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 12 \end{bmatrix}
$$

Example: Let $\mathcal{B} = \{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ be the standard basis for \mathbb{R}^3 , and consider . Then $\mathcal{B} = \{ \vec{e}_1, \vec{e}_2, \vec{e}_3 \}$ be the standard basis for \mathbb{R}^3 $\vec{v} = \Big|$ $\overline{}$ 6 9 12 \overline{a} \overline{a}

$$
\vec{v} = 6\vec{e}_1 + 9\vec{e}_2 + 12\vec{e}_3 \qquad \text{so} \qquad [\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 6 \\ 9 \\ 12 \end{bmatrix}
$$

We've implicitly been using the standard basis everywhere, but often in applications it is better to use a basis suited to the problem.

Section 3.6: Linear Transformations

Given an $m \times n$ matrix A , we can use A to transform a column vector in \mathbb{R}^n into a column vector in $\mathbb{R}^m.$ We write:

 $T_A(\vec{x}) = A\vec{x}$ for \vec{x} in \mathbb{R}^n

Example: If $A = \begin{bmatrix} 0 & 1 \ 2 & 3 \end{bmatrix}$ then $\overline{}$ 0 2 4 1 3 5 $\overline{}$ $\overline{}$

$$
T_A\bigg(\begin{bmatrix} -1 \\ 2 \end{bmatrix}\bigg) = A \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -1 \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}
$$

In general (omitting parentheses),

$$
T_A\left[\begin{matrix}x\\y\end{matrix}\right]=A\left[\begin{matrix}x\\y\end{matrix}\right]=\left[\begin{matrix}0&1\\2&3\\4&5\end{matrix}\right]\left[\begin{matrix}x\\y\end{matrix}\right]=x\left[\begin{matrix}0\\2\\4\end{matrix}\right]+y\left[\begin{matrix}1\\3\\5\end{matrix}\right]=\left[\begin{matrix}y\\2x+3y\\4x+5y\end{matrix}\right]
$$

Note that the matrix A is visible in the last expression.

Any rule T that assigns to each \vec{x} in \mathbb{R}^n a unique vector $T(\vec{x})$ in \mathbb{R}^m is called a **transformation** from \mathbb{R}^n to \mathbb{R}^m and is written $T: \mathbb{R}^n \to \mathbb{R}^m$. T that assigns to each \vec{x} in \mathbb{R}^n a unique vector $T(\vec{x})$ in \mathbb{R}^m \mathbb{R}^n to \mathbb{R}^m and is written $T:\mathbb{R}^n\rightarrow\mathbb{R}^m$

For our A above, we have $T_A: \mathbb{R}^2 \rightarrow \mathbb{R}^3$. T_A is in fact a *linear* transformation.

 $\mathsf{Definition:}\ \mathsf{A}\ \mathsf{transformation}\ T:\mathbb{R}^n\rightarrow\mathbb{R}^m$ is called a linear **transformation** if:

 $1.~T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u} and \vec{v} in \mathbb{R}^n , and

2. $T(c\vec{u}) = c\,T(\vec{u})$ for all \vec{u} in \mathbb{R}^n and all scalars c .

You can check directly that our T_A is linear. For example,

$$
T_A\bigg(c\bigg[\begin{matrix} x\\y\end{matrix}\bigg)\bigg)=T_A\bigg[\begin{matrix} cx\\cy\\c y\end{matrix}\bigg]=\bigg[\begin{matrix} cy\\2cx+3cy\\4cx+5cy\end{matrix}\bigg]=c\begin{bmatrix} y\\2x+3y\\4x+5y\end{bmatrix}=c\,T_A\bigg(\bigg[\begin{matrix} x\\y\end{matrix}\bigg]\bigg)
$$

Check condition (1) yourself, or see Example 3.55.

In fact, every T_A is linear:

 $\bf{Theorem~3.30:}$ Let A be an $m\times n$ matrix. Then $T_A:\mathbb{R}^n\rightarrow\mathbb{R}^m$ is a linear transformation.

Proof: Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n and let $c \in \mathbb{R}$. Then

$$
T_A(\vec{u}+\vec{v})=A(\vec{u}+\vec{v})=A\vec{u}+A\vec{v}=T_A(\vec{u})+T_A(\vec{v})
$$

and

$$
T_A(c\vec{u})=A(c\vec{u})=c\,A\vec{u}=c\,T_A(\vec{u})\qquad\Box
$$

Example 3.56: Let $F:\mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that sends each point to its reflection in the x -axis. Show that F is linear.

Solution: Give a geometrical explanation on the board.

Algebraically, note that $F(\left\lfloor \frac{x}{y} \right\rfloor) = \left\lfloor \frac{x}{-y} \right\rfloor$, from which you can check directly that F is linear. (Exercise.) $\,$ *y x* −*y*

Or, observe that
$$
F(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$
, so $F = T_A$ where
$$
A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

Example: Let $N:\mathbb{R}^2\to\mathbb{R}^2$ be the transformation

$$
N\bigg[\begin{matrix} x \\ y \end{matrix}\bigg] := \bigg[\begin{matrix} xy \\ x+y \end{matrix}\bigg]
$$

Is N linear?

Solution: No. For example,
$$
N\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$
 but
$$
N(2\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = N\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \neq 2\begin{bmatrix} 1 \\ 2 \end{bmatrix}.
$$

It turns out that every linear transformation is a matrix transformation.

 $\bf Theorem~3.31:$ Let $T:\mathbb{R}^n\rightarrow\mathbb{R}^m$ be a linear transformation. Then $T=T_A$, where

$$
A=[\,T(\vec{e}_1)\mid T(\vec{e}_2)\mid\dots\mid T(\vec{e}_n)\,]
$$

Proof: We just check:

$$
\begin{aligned} T(\vec{x}) &= T(x_1\vec{e}_1+\cdots+x_n\vec{e}_n) \\ &= x_1T(\vec{e}_1)+\cdots+x_nT(\vec{e}_n) \quad \text{since T is linear} \\ &= \left[\,T(\vec{e}_1)\mid T(\vec{e}_2)\mid \cdots \mid T(\vec{e}_n)\, \right] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \\ &= A\vec{x} = T_A(\vec{x}) \qquad \qquad \Box \end{aligned}
$$

The matrix A is called the $\boldsymbol{\mathsf{standard}}$ $\boldsymbol{\mathsf{matrix}}$ of T and is written $[T]$.

Example 3.58: Let $R_\theta : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by an angle θ $\,$ counterclockwise about the origin. Show that R_θ is linear and find its standard matrix.

 ${\sf Solution} \colon$ A geometric argument shows that R_θ is linear. On board.

To find the standard matrix, we note that

$$
R_{\theta}\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \quad \text{and} \quad R_{\theta}\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}
$$

Therefore, the standard matrix of R_{θ} is
$$
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.
$$

Now that we know the matrix, we can compute rotations of arbitrary vectors. For example, to rotate the point $(2, -1)$ by 60° :

$$
R_{60}\begin{bmatrix}2\\-1\end{bmatrix} = \begin{bmatrix}\cos 60^{\circ}& -\sin 60^{\circ}\\ \sin 60^{\circ}& \cos 60^{\circ}\end{bmatrix}\begin{bmatrix}2\\-1\end{bmatrix}\\ = \begin{bmatrix}1/2 & -\sqrt{3}/2\\ \sqrt{3}/2 & 1/2\end{bmatrix}\begin{bmatrix}2\\-1\end{bmatrix} = \begin{bmatrix}(2+\sqrt{3})/2\\ (2\sqrt{3}-1)/2\end{bmatrix}
$$

Rotations will be one of our main examples.

New linear transformations from old

If $T:\mathbb{R}^m\to \mathbb{R}^n$ and $S:\mathbb{R}^n\to \mathbb{R}^p$, then $S(T(\vec{x}))$ makes sense for \vec{x} in $\mathbb{R}^m.$ The composition of S and T is the transformation $S\circ T:\mathbb{R}^m\to\mathbb{R}^p$ defined by

$$
(S\circ T)(\vec{x})=S(T(\vec{x})).
$$

If S and T are linear, it is easy to check that this new transformation $S \circ T$ is automatically linear. For example,

$$
\begin{aligned} (S\circ T)(\vec u+\vec v)=S(T(\vec u+\vec v))=S(T(\vec u)+T(\vec v))\\ =S(T(\vec u))+S(T(\vec v))=(S\circ T)(\vec u)+(S\circ T)(\vec v).\end{aligned}
$$

Any guesses for how the the matrix for $S\circ T$ is related to the matrices for S and T ?

 ${\bf Theorem\ 3.32}\colon [S\circ T]=[S][T]$, where $[\ \]$ is used to denote the matrix of a linear transformation.

Proof: Let $A = [S]$ and $B = [T]$. Then

$$
(S \circ T)(\vec{x}) = S(T(\vec{x})) = S(B\vec{x}) = A(B\vec{x}) = (AB)\vec{x}
$$
so $[S \circ T] = AB$.

It's because of this that matrix multiplication is defined how it is! Notice also that the condition on the sizes of matrices in a product matches the requirement that S and T be composable.