Math 1600B Lecture 22, Section 2, 3 Mar 2014

Announcements:

Read Sections 4.0 and 4.1 for next class. Work through recommended homework questions.

Office hour: today, 1:30-2:30 and Wednesday, 10:30-11:15, MC103B.

Tutorials: Quiz this week covers Sections 3.5 and 3.6.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Review of last lecture: Section 3.6: Linear Transformations

Given an m imes n matrix A, we can use A to transform a column vector in \mathbb{R}^n into a column vector in \mathbb{R}^m . We write:

 $T_A(ec{x}) = Aec{x} \quad ext{for } ec{x} ext{ in } \mathbb{R}^n$

Any rule T that assigns to each $ec{x}$ in \mathbb{R}^n a unique vector $T(ec{x})$ in \mathbb{R}^m is called a **transformation** from \mathbb{R}^n to \mathbb{R}^m and is written $T: \mathbb{R}^n \to \mathbb{R}^m$.

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a **linear** transformation if: 1. $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \vec{u} and \vec{v} in \mathbb{R}^n , and 2. $T(c\vec{u})=c\,T(\vec{u})$ for all \vec{u} in \mathbb{R}^n and all scalars c.

Theorem 3.30: Let A be an m imes n matrix. Then $T_A:\mathbb{R}^n o\mathbb{R}^m$ is a linear transformation.

Theorem 3.31: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then $T=T_A$, where

 $A = \left[T(\vec{e}_1) \mid T(\vec{e}_2) \mid \cdots \mid T(\vec{e}_n) \right]$

The matrix A is called the **standard matrix** of T and is written [T].

Example 3.58: Let $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by an angle θ counterclockwise about the origin. Show that R_{θ} is linear and find its standard matrix.

Solution: A geometric argument shows that $R_{ heta}$ is linear.

To find the standard matrix, we note that

$$R_{ heta} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} \cos heta \\ \sin heta \end{bmatrix}$$
 and $R_{ heta} \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} -\sin heta \\ \cos heta \end{bmatrix}$
Therefore, the standard matrix of $R_{ heta}$ is $\begin{bmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{bmatrix}$.

New linear transformations from old

If $T: \mathbb{R}^m \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^p$, then $S(T(\vec{x}))$ makes sense for \vec{x} in \mathbb{R}^m . The **composition** of S and T is the transformation $S \circ T: \mathbb{R}^m \to \mathbb{R}^p$ defined by

 $(S \circ T)(ec{x}) = S(T(ec{x})).$

If S and T are linear, it is easy to check that this new transformation $S\circ T$ is automatically linear.

Theorem 3.32: $[S\circ T]=[S][T]$.

New material

Applet: This java applet illustrates T_A for any 2 imes 2 A you provide.

Try it with:

$$egin{aligned} & [R_{90^\circ}] = egin{bmatrix} & \cos(90) & -\sin(90) \ \sin(90) & \cos(90) \end{bmatrix} = egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix} \ & [F] = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} \ & [R_{60^\circ}] = egin{bmatrix} 1/2 & -\sqrt{3}/2 \ \sqrt{3}/2 & 1/2 \end{bmatrix} = egin{bmatrix} 0.5 & -0.866 \ 0.866 & 0.5 \end{bmatrix} \end{aligned}$$

Example 3.61: Find the standard matrix of the transformation that rotates 90° counterclockwise and then reflects in the *x*-axis. How do $F \circ R_{90}$ and $R_{90} \circ F$ compare? On board.

Example: It is geometrically clear that $R_{ heta} \circ R_{\phi} = R_{ heta+\phi}$. This tells us that

$$\begin{bmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin(\theta + \phi) & \cos(\theta + \phi) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}$$

This implies some trigonometric identities. For example, looking at the top-left entry, we find that

$$\cos(heta+\phi)=\cos(heta)\cos(\phi)-\sin(heta)\sin(\phi)$$

Other trig identities also follow.

Note that R_0 is rotation by zero degrees, so $R_0(ec{x}) = ec{x}$. We say that R_0 is

the **identity transformation**, which we write $I : \mathbb{R}^2 \to \mathbb{R}^2$. Similarly, $R_{360} = I$.

Since $R_{120} \circ R_{120} \circ R_{120} = R_{360} = I$, we must have $[R_{120}]^3 = [I] = I$. This is how I came up with the answer $[R_{120}] = \begin{bmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{bmatrix}$ to the

challenge problem in Lecture 15.

Our new point of view about matrix multiplication gives us a **geometrical** way to understand it!

Inverses of Linear Transformations

Since $R_{60} \circ R_{-60} = R_0 = I$, it follows that $[R_{60}][R_{-60}] = I$. So $[R_{-60}] = [R_{60}]^{-1}$. See Example 3.62 for details.

Definition: Let S and T be linear transformations from \mathbb{R}^n to \mathbb{R}^n . Then S and T are **inverse transformations** if $S \circ T = I$ and $T \circ S = I$. When this is the case, we say that S and T are **invertible** and are **inverses**.

The same argument as for matrices shows that an inverse is unique when it exists, so we write $S = T^{-1}$ and $T = S^{-1}$.

Theorem 3.33: Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Then T is invertible if and only if [T] is an invertible matrix. In this case, $[T^{-1}] = [T]^{-1}$.

The argument is easy and is essentially what we did for R_{60} .

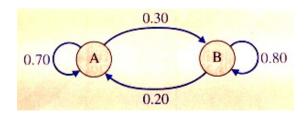
Question: Is projection onto the *x*-axis invertible?

Question: Is reflection in the *x*-axis invertible?

Question: Is translation a linear transformation?

Section 3.7: Markov Chains

Example 3.64: 200 people are testing two brands of toothpaste, Brand A and Brand B. Each month they are allowed to switch brands. The research firm observes the following:



- Of those using Brand A in a given month, 70% continue in the following month and 30% switch to B.
- Of those using Brand B in a given month, 80% continue in the following month and 20% switch to A.

This is called a **Markov chain**. There are definite states, and from each state there is a **transition probability** for moving to another state at each time step. These probabilities are constant and depend only on the current state.

Suppose at the start that 120 people use Brand A and 80 people use Brand B. Then, in the next month,

$$0.70(120) + 0.20(80) = 100 \quad {
m will \ use \ Brand \ A}$$

and

$$0.30(120) + 0.80(80) = 100$$
 will use Brand B

This is a matrix equation:

$$\begin{bmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{bmatrix} \begin{bmatrix} 120 \\ 80 \end{bmatrix} = \begin{bmatrix} 100 \\ 100 \end{bmatrix}$$

Write P for the **transition matrix** and \vec{x}_k for the **state vector** after k months have gone by. Then $\vec{x}_{k+1} = P\vec{x}_k$. So

$$ec{x}_2 = Pec{x}_1 = egin{bmatrix} 0.70 & 0.20 \ 0.30 & 0.80 \end{bmatrix} egin{bmatrix} 100 \ 100 \end{bmatrix} = egin{bmatrix} 90 \ 110 \end{bmatrix}$$

and we see that there are 90 people using Brand A and 110 using Brand B after 2 months.

We can also work with the percentage of people using each brand. Then

$$ec{x}_0=egin{bmatrix} 120/200\ 80/200 \end{bmatrix}=egin{bmatrix} 0.60\ 0.40 \end{bmatrix}$$
 and $Pec{x}_0=egin{bmatrix} 0.50\ 0.50 \end{bmatrix}$. Vectors with

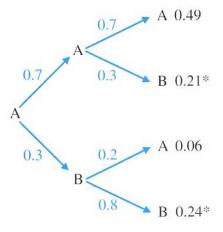
non-negative components that sum to 1 are called probability vectors

Note that P is a **stochastic matrix**: this means that it is square and that each column is a probability vector.

The column indices of P correspond to the current state and the row indices correspond to the next state. The entry P_{ij} is the probability that you transition from state j to state i in one time step, where we now label the states with numbers.

Multiple steps: Can we compute the probability that we go from state j to state i in **two** steps? Well, $x_{k+2} = Px_{k+1} = P^2x_k$, so the matrix P^2 computes this transition:

$$P^2 = egin{bmatrix} 0.7 & 0.2 \ 0.3 & 0.8 \end{bmatrix} egin{bmatrix} 0.7 & 0.2 \ 0.3 & 0.8 \end{bmatrix} = egin{bmatrix} 0.55 & 0.30 \ 0.45 & 0.70 \end{bmatrix}$$



So the probability of going from Brand A to Brand B after two steps is $(P^2)_{21}=0.45=0.21+0.24$.

More generally, $\left(P^k
ight)_{ij}$ is the probability of going from state j to state i in k steps.

Long-term behaviour: By multiplying by P, you can show that the state evolves as follows:

$$\begin{bmatrix} 0.60\\ 0.40 \end{bmatrix}, \begin{bmatrix} 0.50\\ 0.50 \end{bmatrix}, \begin{bmatrix} 0.45\\ 0.55 \end{bmatrix}, \begin{bmatrix} 0.425\\ 0.575 \end{bmatrix}, \begin{bmatrix} 0.412\\ 0.588 \end{bmatrix}, \begin{bmatrix} 0.406\\ 0.594 \end{bmatrix}, \begin{bmatrix} 0.403\\ 0.597 \end{bmatrix}, \begin{bmatrix} 0.402\\ 0.598 \end{bmatrix}, \begin{bmatrix} 0.401\\ 0.599 \end{bmatrix}, \begin{bmatrix} 0.400\\ 0.600 \end{bmatrix}, \begin{bmatrix} 0.400\\ 0.600 \end{bmatrix}, \dots$$

with 40% of the people using Brand A in the long run. Since

$$\begin{bmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$$

once we reach this state, we don't leave. A state \vec{x} with $P\vec{x} = \vec{x}$ is called a **steady state vector**. We'll prove below that every Markov chain has a steady state vector!

Here's how to find it. We want to find $ec{x}$ such that $(I-P)ec{x}=ec{0}$. The augmented system is

$$\left[I - P \mid ec{0}
ight] = \left[egin{array}{cc|c} 0.30 & -0.20 & 0 \ -0.30 & 0.20 & 0 \end{array}
ight]$$

which reduces to

$$\left[\begin{array}{cc|c} 1 & -2/3 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

The solution is

$$x_1=rac{2}{3}\,t,\quad x_2=t$$

We'd like a probability vector, so $\frac{2}{3}t + t = 1$ which means that t = 3/5. This gives $\vec{x} = \begin{bmatrix} 0.4\\ 0.6 \end{bmatrix}$ as we found above.