Math 1600B Lecture 23, Section 2, 5 Mar 2014

Announcements:

Read Section 4.2 for next class. Work through recommended homework questions.

Midterms available for pick-up starting Thursday. (If you have a Wednesday tutorial, your TA will be available Thursday or Friday.) Solutions will be posted Thursday.

Drop date: Friday, March 7.

Tutorials: Quiz this week covers Sections 3.5 and 3.6, focusing on 3.6.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

New Material: Section 3.7: Markov chains (cont)

Example 3.65: A Markov chain can have more than two states. A rat is in a maze with three rooms, and always chooses to go through one of the doors with equal probability. Draw the state diagram, determine the transition matrix P and describe how to find a steady-state vector.

Solution: Draw state diagram on board.

From this, we find the **transition matrix**

$$P = egin{bmatrix} 0 & 1/3 & 1/3 \ 1/2 & 0 & 2/3 \ 1/2 & 2/3 & 0 \end{bmatrix}$$

The P_{ij} entry is the probability of going from room j to room i. Note that the columns are **probability vectors** (non-negative entries that sum to 1) and so P is a **stochastic matrix** (square, with columns being probability vectors).

A **steady state vector** is a vector \vec{x} such that $P\vec{x}=\vec{x}$. That is, $\vec{x}-P\vec{x}=\vec{0}$, or $(I-P)\vec{x}=\vec{0}$. To see if there is a non-trivial steady state vector for this Markov chain, we solve the homogeneous system with coefficient matrix I-P:

$$\left[egin{array}{ccc|c} 1 & -1/3 & -1/3 & 0 \ -1/2 & 1 & -2/3 & 0 \ -1/2 & -2/3 & 1 & 0 \ \end{array}
ight]$$

In RREF:

$$\left[egin{array}{ccc|c} 1 & 0 & -2/3 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

So $x_3=t$, $x_2=t$ and $x_1=rac{2}{3}\,t$. If we want a probability vector, then we

want
$$t+t+rac{2}{3}\,t=1$$
, so $t=3/8$, so we get $\begin{bmatrix} 2/8\\3/8\\3/8 \end{bmatrix}$.

Theorem: Every Markov chain has a non-trivial steady state vector.

This appears in the book as Theorem 4.30 in Section 4.6.

Proof: Let P be the transition matrix. We want to find a non-trivial solution to $(I-P)\vec x=\vec 0$. By the fundamental theorem of invertible matrices and the fact that $\mathrm{rank}(I-P)=\mathrm{rank}((I-P)^T)$, this is equivalent to $(I-P)^T\vec x=\vec 0$ having a non-trivial solution. That is, finding a non-trivial $\vec x$ such that

$$P^T \vec{x} = \vec{x} \quad ext{(since } I^T = I).$$

But since P is a stochastic matrix, we always have

$$P^Tegin{bmatrix}1\ dots\1\end{bmatrix}=egin{bmatrix}1\ dots\1\end{bmatrix}$$

So therefore $P ec{x} = ec{x}$ also has a (different) non-trivial solution. \Box

We'll probably study Markov chains again in Section 4.6.

Section 4.1: Eigenvalues and eigenvectors

We saw when studying Markov chains that it was important to find solutions to the system $A\vec{x}=\vec{x}$, where A is a square matrix. We did this by solving $(I-A)\vec{x}=\vec{0}$.

More generally, a central problem in linear algebra is to find \vec{x} such that $A\vec{x}$ is a *scalar multiple* of \vec{x} .

Definition: Let A be an $n \times n$ matrix. A scalar λ (lambda) is called an **eigenvalue** of A if there is a nonzero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$. Such a vector \vec{x} is called an **eigenvector** of A corresponding to λ .

We showed that $\lambda=1$ is an eigenvalue of every stochastic matrix P.

Example A: Since

$$egin{bmatrix} 1 & 2 \ 2 & -2 \end{bmatrix} egin{bmatrix} 2 \ 1 \end{bmatrix} = egin{bmatrix} 4 \ 2 \end{bmatrix} = 2 egin{bmatrix} 2 \ 1 \end{bmatrix},$$

we see that 2 is an eigenvalue of $\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$ with eigenvector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Example 4.2: Show that 5 is an eigenvalue of $A=\begin{bmatrix}1&2\\4&3\end{bmatrix}$ and determine all eigenvectors corresponding to this eigenvalue.

Solution: We are looking for nonzero solutions to $A\vec{x}=5\vec{x}$. This is the same as $(A-5I)\vec{x}=\vec{0}$, so we compute the coefficient matrix:

$$A-5I=egin{bmatrix}1&2\4&3\end{bmatrix}-egin{bmatrix}5&0\0&5\end{bmatrix}=egin{bmatrix}-4&2\4&-2\end{bmatrix}$$

The columns are linearly dependent, so the null space of A-5I is nonzero. So $A\vec x=5\vec x$ has a nontrivial solution, which is what it means for 5 to be an eigenvalue.

To find the eigenvectors, we compute the null space of A-5I:

$$\left[egin{array}{c|c} A-5I \mid ec{0} \end{array}
ight] = \left[egin{array}{c|c} -4 & 2 & 0 \ 4 & -2 & 0 \end{array}
ight]
ightarrow \left[egin{array}{c|c} 1 & -1/2 & 0 \ 0 & 0 & 0 \end{array}
ight]$$

The solutions are of the form $\left[egin{array}{c} t/2 \\ t \end{array} \right] = t \left[egin{array}{c} 1/2 \\ 1 \end{array} \right]$. So the eigenvectors for

the eigenvalue 5 are the *nonzero* multiples of $\begin{bmatrix} 1/2 \\ 1 \end{bmatrix}$.

Definition: Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The collection of all eigenvectors corresponding to λ , together with the zero vector, is a subspace called the **eigenspace** of λ and is denoted E_{λ} . In other words,

$$E_{\lambda} = \text{null}(A - \lambda I).$$

In the above Example, $E_5=\mathrm{span}igg\{egin{bmatrix}1/2\\1\end{bmatrix}igg\}.$

Example: Give an eigenvalue of the matrix $A=\begin{bmatrix}2&0\\0&2\end{bmatrix}$ and compute its eigenspace.

Since $A\vec{x}=2\vec{x}$ for every \vec{x} , 2 is an eigenvalue, and is the only eigenvalue. In this case, $E_2=\mathbb{R}^2$.

Example: If 0 is an eigenvalue of A, what is another name for E_0 ?

 E_0 is the null space of A-0I=A. That is, $E_0=\operatorname{null}(A)$.

An applet illustrating the transformation $T_A:\mathbb{R}^2\to\mathbb{R}^2$, for A the 2×2 matrix shown. The black vector is the input \vec{x} , and the blue vector is the output $T_A(\vec{x})=A\vec{x}$.

$$A = \left[egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight]$$

$$ec{x} = \left[egin{array}{c} 2.0 \ 2.0 \end{array}
ight] \quad Aec{x} = \left[egin{array}{c} 2.0 \ -2.0 \end{array}
ight]$$

Reflection in x-axis. Reflection in y-axis. Projection onto x-axis. Rotation by 90° ccw. Rotate and scale. Example A from above. A rank 1 example.

Custom:

(Click to move input vector. Hit 't' to toggle modes. Click on a phrase to the right to change the matrix. Enter four numbers, separated by spaces, for a custom matrix.)

Applet: See also this java applet. (Instructions.) If that doesn't work, here is another applet.

Read Example 4.3 in the text for a 3×3 example.

Finding eigenvalues

Given a specific number λ , we now know how to check whether λ is an eigenvalue: we check whether $A-\lambda I$ has a nontrivial null space. And we can find the eigenvectors by finding the null space.

We also have a geometric way to find **all** eigenvalues λ , at least in the 2×2 case. Is there an algebraic way to check all λ at once?

By the fundamental theorem of invertible matrices, $A-\lambda I$ has a nontrivial null space if and only if it is not invertible. For 2×2 matrices, we can check

invertibility using the determinant!

Example: Find all eigenvalues of $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$.

Solution: We need to find all λ such that $\det(A - \lambda I) = 0$.

$$egin{split} \det(A-\lambda I) &= \detegin{bmatrix} 1-\lambda & 2 \ 2 & -2-\lambda \end{bmatrix} \ &= (1-\lambda)(-2-\lambda)-4 = \lambda^2+\lambda-6, \end{split}$$

so we need to solve the quadratic equation $\lambda^2+\lambda-6=0$. This can be factored as $(\lambda-2)(\lambda+3)=0$, and so $\lambda=2$ or $\lambda=-3$, the same as we saw above and with the applet.

We proceed to find the eigenvectors for these eigenvalues, by solving $(A-2I)\vec{x}=\vec{0}$ and $(A+3I)\vec{x}=\vec{0}$. On board, if time.

Appendix D provides review of polynomials and their solutions.

See also Example 4.5 in text.

So now we know how to handle the 2×2 case. To handle larger matrices, we need to learn about their determinants, which is Section 4.2.

We won't discuss eigenvectors and eigenvalues for matrices over \mathbb{Z}_m . We will discuss complex numbers \mathbb{C} in a later lecture.