Math 1600B Lecture 23, Section 2, 5 Mar 2014

Announcements:

Read Section 4.2 for next class. Work through recommended homework
questions.

Midterms available for pick-up starting Thursday. (If you have a Wednesday
tutorial, your TA will be available Thursday or Friday.) Solutions will be
posted Thursday.

Drop date: Friday, March 7.
Tutorials: Quiz this week covers Sections 3.5 and 3.6, focusing on 3.6.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

New Material: Section 3.7: Markov chains (cont)

Example 3.65: A Markov chain can have more than two |
states. A rat is in a maze with three rooms, and always
chooses to go through one of the doors with equal 2 3
probability. Draw the state diagram, determine the transition
matrix P and describe how to find a steady-state vector. I

Solution: Draw state diagram on board. 1

From this, we find the transition matrix

0 1/3 1/3
P=1|1/2 0 2/3
1/2 2/3 0

The Pij entry is the probability of going from room 7 to room 2. Note that
the columns are probability vectors (non-negative entries that sum to 1)
and so P is a stochastic matrix (square, with columns being probability
vectors).



A steady state vector is a vector Z such that PZ = Z. That is,

Z — P2 =0, or (I — P)Z = 0. To see if there is a non-trivial steady state
vector for this Markov chain, we solve the homogeneous system with
coefficient matrix I — P:

1 -1/3 -1/3|0 ]
—1/2 1 —-2/3|0
-1/2 -2/3 110
In RREF:
1 0 —-2/3|0
0 1 —11]0
0 O 00
Som3:t,m2:tandm1:%t. If we want a probability vector, then we
2/8
wantt+¢+ 2¢t=1sot=23/8, soweget | 3/8
3/8

Theorem: Every Markov chain has a non-trivial steady state vector.
This appears in the book as Theorem 4.30 in Section 4.6.

Proof: Let P be the transition matrix. We want to find a non-trivial solution
to (I — P)Z = 0. By the fundamental theorem of invertible matrices and
the fact that rank(I — P) = rank((I — P)"), this is equivalent to

(I — P)"'Z = 0 having a non-trivial solution. That is, finding a non-trivial Z
such that

PTz =2z (since I =1).

But since P is a stochastic matrix, we always have



So therefore PZ = Z also has a (different) non-trivial solution. []

We'll probably study Markov chains again in Section 4.6.
Section 4.1: Eigenvalues and eigenvectors

We saw when studying Markov chains that it was important to find solutions
to the system AZ = Z, where A is a square matrix. We did this by solving

(I —A)Z =0.

More generally, a central problem in linear algebra is to find Z such that A%
is a scalar multiple of Z.

Definition: Let A be an n X n matrix. A scalar A (lambda) is called an
eigenvalue of A if there is a nonzero vector Z such that AZ = AZ. Such a
vector 7 is called an eigenvector of A corresponding to .

We showed that A = 1 is an eigenvalue of every stochastic matrix P.

Example A: Since

R

: : 1 21 ... . 2
we see that 2 is an eigenvalue of 9 9 with eigenvector 1|

1
4 3

Example 4.2: Show that 5 is an eigenvalue of A = [ ] and determine
all eigenvectors corresponding to this eigenvalue.

Solution: We are looking for nonzero solutions to AZ = 5Z. This is the
same as (A — 5I)Z = 0, so we compute the coefficient matrix:



|1 2 5 0| |4 2
A_5I_[4 3] [0 5]_[ 4 —2]
The columns are linearly dependent, so the null space of A — 51 is nonzero.

So AZ = 5Z has a nontrivial solution, which is what it means for 5 to be an
eigenvalue.

To find the eigenvectors, we compute the null space of A — 51:
A—b5I]0]=
| 0] [ 4—20]610 00]
The solutions are of the form [tézl =1 [ 1{2] . So the eigenvectors for

: , 1/2
the eigenvalue 5 are the nonzero multiples of 1|

Definition: Let A be an n X n matrix and let X be an eigenvalue of A. The
collection of all eigenvectors corresponding to A, together with the zero
vector, is a subspace called the eigenspace of A and is denoted F. In
other words,

E) = null(A — \I).

In the above Example, Fy = span{ [1{2] }

Example: Give an eigenvalue of the matrix A = [ ] and compute its

0 2

eigenspace.

Since A% = 2Z for every @, 2 is an eigenvalue, and is the only eigenvalue.
In this case, Fy = R2.

Example: If 0 is an eigenvalue of A, what is another name for E{?

Ej is the null space of A — 0] = A. Thatis, Ey = null(A4).



An applet illustrating the transformation T4 : R? — R?, for A the 2 x 2
matrix shown. The black vector is the input Z, and the blue vector is the
output Ty (Z) = AZ.
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(Click to move input vector. Hit 't' to toggle modes. Click on a phrase to the right to change the
matrix. Enter four numbers, separated by spaces, for a custom matrix.)

Applet: See also this java applet. (Instructions.) If that doesn't work, here is
another applet.

Read Example 4.3 in the text for a 3 X 3 example.

Finding eigenvalues

Given a specific number A, we now know how to check whether A is an
eigenvalue: we check whether A — A\I has a nontrivial null space. And we
can find the eigenvectors by finding the null space.

We also have a geometric way to find all eigenvalues ), at least in the
2 X 2 case. Is there an algebraic way to check all A at once?

By the fundamental theorem of invertible matrices, A — AI has a nontrivial
null space if and only if it is not invertible. For 2 X 2 matrices, we can check



invertibility using the determinant!

Example: Find all eigenvalues of A = [; ;] :

Solution: We need to find all A such that det(A — AI) = 0.

i 2
det(A—)\I)—det[ 5 —2—)\]

=(1-X)(-2=-XA)—4=X+X—6,

so we need to solve the quadratic equation % + XA — 6 = 0. This can be
factored as (A — 2)(A+3) =0, and so A = 2 or A = —3, the same as we
saw above and with the applet.

We proceed to find the eigenvectors for these eigenvalues, by solving
(A—2I)Z =0and (A+ 3I)Z = 0. On board, if time.

Appendix D provides review of polynomials and their solutions.
See also Example 4.5 in text.

So now we know how to handle the 2 X 2 case. To handle larger matrices,
we need to learn about their determinants, which is Section 4.2.

We won't discuss eigenvectors and eigenvalues for matrices over Z,,. We
will discuss complex numbers C in a later lecture.



