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Math 1600B Lecture 23, Section 2, 5 Mar 2014

Announcements:

Read Section 4.2 for next class. Work through recommended homework
questions.

Midterms available for pick-up starting Thursday. (If you have a Wednesday
tutorial, your TA will be available Thursday or Friday.) Solutions will be
posted Thursday.

Drop date: Friday, March 7.

Tutorials: Quiz this week covers Sections 3.5 and 3.6, focusing on 3.6.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

New Material: Section 3.7: Markov chains (cont)

Example 3.65: A Markov chain can have more than two
states. A rat is in a maze with three rooms, and always
chooses to go through one of the doors with equal
probability. Draw the state diagram, determine the transition
matrix  and describe how to find a steady-state vector.

Solution: Draw state diagram on board.

From this, we find the transition matrix

The  entry is the probability of going from room  to room . Note that

the columns are probability vectors (non-negative entries that sum to 1)
and so  is a stochastic matrix (square, with columns being probability
vectors).
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A steady state vector is a vector  such that . That is,

, or . To see if there is a non-trivial steady state
vector for this Markov chain, we solve the homogeneous system with
coefficient matrix :

In RREF:

So ,  and . If we want a probability vector, then we

want , so , so we get .

Theorem: Every Markov chain has a non-trivial steady state vector.

This appears in the book as Theorem 4.30 in Section 4.6.

Proof: Let  be the transition matrix. We want to find a non-trivial solution

to . By the fundamental theorem of invertible matrices and

the fact that , this is equivalent to

 having a non-trivial solution. That is, finding a non-trivial 
such that

But since  is a stochastic matrix, we always have
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So therefore  also has a (different) non-trivial solution.

We'll probably study Markov chains again in Section 4.6.

Section 4.1: Eigenvalues and eigenvectors

We saw when studying Markov chains that it was important to find solutions
to the system , where  is a square matrix. We did this by solving

.

More generally, a central problem in linear algebra is to find  such that 
is a scalar multiple of .

Definition: Let  be an  matrix. A scalar  (lambda) is called an
eigenvalue of  if there is a nonzero vector  such that . Such a
vector  is called an eigenvector of  corresponding to .

We showed that  is an eigenvalue of every stochastic matrix .

Example A: Since

we see that  is an eigenvalue of  with eigenvector .

Example 4.2: Show that  is an eigenvalue of  and determine

all eigenvectors corresponding to this eigenvalue.

Solution: We are looking for nonzero solutions to . This is the

same as , so we compute the coefficient matrix:
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The columns are linearly dependent, so the null space of  is nonzero.
So  has a nontrivial solution, which is what it means for  to be an
eigenvalue.

To find the eigenvectors, we compute the null space of :

The solutions are of the form . So the eigenvectors for

the eigenvalue  are the nonzero multiples of .

Definition: Let  be an  matrix and let  be an eigenvalue of . The
collection of all eigenvectors corresponding to , together with the zero
vector, is a subspace called the eigenspace of  and is denoted . In
other words,

In the above Example, .

Example: Give an eigenvalue of the matrix  and compute its

eigenspace.

Since  for every ,  is an eigenvalue, and is the only eigenvalue.

In this case, .

Example: If  is an eigenvalue of , what is another name for ?

 is the null space of . That is, .

A − 5I = [ ] − [ ] = [ ]1
4

2
3

5
0

0
5

−4
4

2
−2

A − 5I
A = 5x⃗ x⃗ 5

A − 5I

[ A − 5I ∣ ] = [ ] [ ]0⃗ −4
4

2
−2

0
0

→
1
0

−1/2
0

0
0

[ ] = t[ ]t/2
t

1/2
1

5 [ ]1/2
1

A n × n λ A
λ

λ Eλ

= null(A − λI).Eλ

= span{[ ]}E5
1/2

1

A = [ ]2
0

0
2

A = 2x⃗ x⃗ x⃗ 2
=E2 R2

0 A E0

E0 A − 0I = A = null(A)E0



An applet illustrating the transformation , for  the 
matrix shown. The black vector is the input , and the blue vector is the
output .
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Reflection in -axis.
Reflection in -axis.
Projection onto -axis.
Rotation by  ccw.
Rotate and scale.
Example A from above.
A rank 1 example.
Custom: 

(Click to move input vector. Hit 't' to toggle modes. Click on a phrase to the right to change the
matrix. Enter four numbers, separated by spaces, for a custom matrix.)

Applet: See also this java applet. (Instructions.) If that doesn't work, here is
another applet.

Read Example 4.3 in the text for a  example.

Finding eigenvalues

Given a specific number , we now know how to check whether  is an
eigenvalue: we check whether  has a nontrivial null space. And we
can find the eigenvectors by finding the null space.

We also have a geometric way to find all eigenvalues , at least in the
 case. Is there an algebraic way to check all  at once?

By the fundamental theorem of invertible matrices,  has a nontrivial
null space if and only if it is not invertible. For  matrices, we can check
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invertibility using the determinant!

Example: Find all eigenvalues of .

Solution: We need to find all  such that .

so we need to solve the quadratic equation . This can be
factored as , and so  or , the same as we
saw above and with the applet.

We proceed to find the eigenvectors for these eigenvalues, by solving

 and . On board, if time.

Appendix D provides review of polynomials and their solutions.

See also Example 4.5 in text.

So now we know how to handle the  case. To handle larger matrices,
we need to learn about their determinants, which is Section 4.2.

We won't discuss eigenvectors and eigenvalues for matrices over . We
will discuss complex numbers  in a later lecture.
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