Math 1600B Lecture 23, Section 2, 5 Mar 2014

Announcements:

Read Section 4.2 for next class. Work through recommended homework questions.

Midterms available for pick-up starting Thursday. (If you have a Wednesday tutorial, your TA will be available Thursday or Friday.) Solutions will be posted Thursday.

Drop date: Friday, March 7.

Tutorials: Quiz this week covers Sections 3.5 and 3.6, focusing on 3.6.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

New Material: Section 3.7: Markov chains (cont)

Example 3.65: A Markov chain can have more than two states. A rat is in a maze with three rooms, and always chooses to go through one of the doors with equal probability. Draw the state diagram, determine the transition matrix P and describe how to find a steady-state vector.

Solution: Draw **state diagram** on board.

From this, we find the **transition matrix**

The P_{ij} entry is the probability of going from room j to room i . Note that the columns are **probability vectors** (non-negative entries that sum to 1) and so P is a **stochastic matrix** (square, with columns being probability vectors).

A **steady state vector** is a vector \vec{x} such that $P\vec{x} = \vec{x}$. That is, $\vec{x} - P\vec{x} = \vec{0}$, or $(I-P)\vec{x} = \vec{0}$. To see if there is a non-trivial steady state vector for this Markov chain, we solve the homogeneous system with coefficient matrix $I-P\mathrm{:}$

$$
\left[\begin{array}{rrr} 1 & -1/3 & -1/3 & 0 \\ -1/2 & 1 & -2/3 & 0 \\ -1/2 & -2/3 & 1 & 0 \end{array}\right]
$$

In RREF:

So $x_3 = t$, $x_2 = t$ and $x_1 = \frac{2}{3} t$. If we want a probability vector, then we want $t + t + \frac{2}{3} \, t = 1$, so $t = 3/8$, so we get $\Big\lvert \; 3/8 \; \Big\rvert$. $\overline{}$ $\overline{}$ $\overline{}$ $2/8$ $3/8$ $3/8$ $\overline{}$ $\overline{}$ \vert

Theorem: Every Markov chain has a non-trivial steady state vector.

This appears in the book as Theorem 4.30 in Section 4.6.

Proof: Let P be the transition matrix. We want to find a non-trivial solution to $(I-P)\vec{x} = \vec{0}$. By the fundamental theorem of invertible matrices and the fact that $\mathrm{rank}(I-P)=\mathrm{rank}((I-P)^T)$, this is equivalent to $\hat{h}(I-P)^T\vec{x}=\vec{0}$ having a non-trivial solution. That is, finding a non-trivial \vec{x} such that

 $P^T \vec{x} = \vec{x}$ (since $I^T = I$).

But since P is a stochastic matrix, we always have

$$
P^T \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}
$$

So therefore $P\vec{x} = \vec{x}$ also has a (different) non-trivial solution. $\hfill \Box$

We'll probably study Markov chains again in Section 4.6.

Section 4.1: Eigenvalues and eigenvectors

We saw when studying Markov chains that it was important to find solutions to the system $A\vec{x} = \vec{x}$, where A is a square matrix. We did this by solving $(I - A)\vec{x} = \vec{0}.$

More generally, a central problem in linear algebra is to find \vec{x} such that $A\vec{x}$ is a *scalar multiple* of $\vec{x}.$

 $\boldsymbol{\mathsf{Definition:}}$ Let A be an $n \times n$ matrix. A scalar λ (lambda) is called an $\bf e$ igenvalue of A if there is a nonzero vector \vec{x} such that $A\vec{x}=\lambda \vec{x}$. Such a vector \vec{x} is called an $\bf{eigenvector}$ of A corresponding to $\lambda.$

We showed that $\lambda = 1$ is an eigenvalue of every stochastic matrix $P.$

Example A: Since

$$
\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix},
$$

we see that 2 is an eigenvalue of $\begin{bmatrix} 1 & 2 \ 2 & -2 \end{bmatrix}$ with eigenvector $\begin{bmatrix} 2 \ 1 \end{bmatrix}$. 2 $\begin{bmatrix} 2 \ -2 \end{bmatrix}$ with eigenvector $\begin{bmatrix} 2 \ 1 \end{bmatrix}$

Example 4.2: Show that 5 is an eigenvalue of $A = \begin{bmatrix} 1 & 2 \ 4 & 3 \end{bmatrix}$ and determine all eigenvectors corresponding to this eigenvalue. 4 2 3

Solution: We are looking for nonzero solutions to $A\vec{x} = 5\vec{x}$. This is the same as $(A-5I)\vec{x} = \vec{0}$, so we compute the coefficient matrix:

$$
A-5I=\begin{bmatrix}1&2\\4&3\end{bmatrix}-\begin{bmatrix}5&0\\0&5\end{bmatrix}=\begin{bmatrix}-4&2\\4&-2\end{bmatrix}
$$

The columns are linearly dependent, so the null space of $A-5I$ is nonzero. So $A\vec{x}=5\vec{x}$ has a nontrivial solution, which is what it means for 5 to be an eigenvalue.

To find the eigenvectors, we compute the null space of $A-5I\mathrm{:}$

$$
[A-5I \mid \vec{0}] = \begin{bmatrix} -4 & 2 & 0 \\ 4 & -2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

The solutions are of the form $\left|\frac{t/2}{t}\right|=t\left|\frac{1/2}{1}\right|$. So the eigenvectors for *t* $1/2\,$ 1

the eigenvalue 5 are the *nonzero* multiples of $\left\lfloor\frac{1/2}{1}\right\rfloor$. 1

Definition: Let A be an $n \times n$ matrix and let λ be an eigenvalue of A . The collection of all eigenvectors corresponding to λ , together with the zero ϵ vector, is a subspace called the \bold{e} igenspace of λ and is denoted $E_\lambda.$ In other words,

 $E_{\lambda} = \text{null}(A - \lambda I).$

In the above Example, $E_5=\mathrm{span}\Big\{\left\lfloor \frac{1/2}{\mathsf{1}}\right\rfloor\Big\}$. 1

Example: Give an eigenvalue of the matrix $A = \begin{bmatrix} 2 & 0 \ 0 & 2 \end{bmatrix}$ and compute its 0 $\boldsymbol{0}$ 2

eigenspace.

Since $A\vec{x} = 2\vec{x}$ for every \vec{x} , 2 is an eigenvalue, and is the only eigenvalue. In this case, $E_2=\mathbb{R}^2$.

Example: If 0 is an eigenvalue of A , what is another name for E_0 ?

 E_0 is the null space of $A-0I=A$. That is, $E_0=\operatorname{null}(A)$.

An applet illustrating the transformation $T_A:\mathbb{R}^2\rightarrow\mathbb{R}^2$, for A the 2×2 matrix shown. The black vector is the input \vec{x} , and the blue vector is the output $T_A(\vec{x}) = A\vec{x}$.

(Click to move input vector. Hit 't' to toggle modes. Click on a phrase to the right to change the matrix. Enter four numbers, separated by spaces, for a custom matrix.)

Applet: See also this java applet. (Instructions.) If that doesn't work, here is another applet.

Read Example 4.3 in the text for a 3×3 example.

Finding eigenvalues

Given a specific number λ , we now know how to check whether λ is an eigenvalue: we check whether $A - \lambda I$ has a nontrivial null space. And we can find the eigenvectors by finding the null space.

We also have a geometric way to find **all** eigenvalues λ , at least in the 2×2 case. Is there an algebraic way to check all λ at once?

By the fundamental theorem of invertible matrices, $A-\lambda I$ has a nontrivial null space if and only if it is not invertible. For 2×2 matrices, we can check invertibility using the determinant!

Example: Find all eigenvalues of $A = \begin{bmatrix} 1 & 2 \ 2 & -2 \end{bmatrix}$. 2 2 -2

Solution: We need to find all λ such that $\det(A - \lambda I) = 0.$

$$
\begin{aligned} \det(A - \lambda I) &= \det\left[\frac{1 - \lambda}{2} \frac{2}{-2 - \lambda}\right] \\ &= (1 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + \lambda - 6, \end{aligned}
$$

so we need to solve the quadratic equation $\lambda^2 + \lambda - 6 = 0.$ This can be factored as $(\lambda-2)(\lambda+3)=0$, and so $\lambda=2$ or $\lambda=-3$, the same as we saw above and with the applet.

We proceed to find the eigenvectors for these eigenvalues, by solving $(A-2I)\vec{x} = \vec{0}$ and $(A+3I)\vec{x} = \vec{0}$. On board, if time.

Appendix D provides review of polynomials and their solutions.

See also Example 4.5 in text.

So now we know how to handle the 2×2 case. To handle larger matrices, we need to learn about their determinants, which is Section 4.2.

We won't discuss eigenvectors and eigenvalues for matrices over \mathbb{Z}_m . We will discuss complex numbers $\mathbb C$ in a later lecture.