
Math 1600B Lecture 25, Section 2, 10 Mar 2014

Announcements:

Today we mostly finish 4.2. Read Section 4.3 for next class.
Work through recommended homework questions.

Tutorials: Quiz 7 will cover 3.7 (just Markov chains), 4.1, and 4.2 up to and
including Example 4.13.

Office hour: Monday, 1:30-2:30 and Wednesday, 10:30-11:15, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Summary of Section 4.2: Determinants

For an  matrix , write  for the matrix obtained from  by deleting

the th row and the th column. Then  is called the -minor of

, and

is called the -cofactor of .

Definition: Let  be an  matrix. Then the determinant of 

is the scalar

We define the determinant of a  matrix  to be .

This is a recursive definition!

For :
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as we defined earlier.

For a  matrix , we have

The computation can be very long if there aren't many zeros! We'll learn
some better methods.

The above is called the cofactor expansion along the first row. It turns
out that any row or column works!

Theorem 4.1 (The Laplace Expansion Theorem): Let  be any 
matrix. Then for each  we have

(cofactor expansion along the th row). And for each  we have

(cofactor expansion along the th column).

The book proves this result at the end of this section, but we won't cover
the proof.

The signs in the cofactor expansion form a checkerboard pattern:
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A triangular matrix is a square matrix that is all zero below the diagonal or
above the diagonal.

Theorem 4.2: If  is triangular, then  is the product of the diagonal
entries.

Better methods

Laplace Expansion is convenient when there are appropriately placed zeros
in the matrix, but it is not good in general. It produces  different terms,
which is waaaaay too slow for large matrices.

So how do we do better? Like always, we turn to row reduction! These
properties will be what we need:

Theorem 4.3: Let  be a square matrix.

a. If  has a zero row, the .
b. If  is obtained from  by interchanging two rows, then

.
c. If  has two identical rows, then .
d. If  is obtained from  by multiplying a row of  by , then

.
e. If ,  and  are identical in all rows except the th row, and the th row
of  is the sum of the th rows of  and , then .
f. If  is obtained from  by adding a multiple of one row to another, then

.

All of the above statements are true with rows replaced by columns.

The bold statements are the ones that are useful for understanding how row
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operations change the determinant.

New material: Section 4.2: Determinants (cont)

Example: Use row operations to compute  by reducing to triangular

form, where . On board.

Example: Same for .

Row reduction of an  matrix requires roughly  operations in general,
which is much less than  factorial. E.g. 3 hours vs. 1 year to do a 
matrix by hand?

Note that you can even mix and match row and column operations, if it
simplifies the work.

Determinants and Invertibility

Theorem 4.6: A square matrix  is invertible if and only if .

The book proves this using elementary matrices, which we aren't covering,
but here is a simpler proof.

Proof: If  is invertible, then by the Fundamental Theorem, the reduced
row echelon form of  is . Each elementary row operation either leaves the
determinant the same or multiplies by a non-zero number. Since

, we must also have .

On the other hand, if  is not invertible, then the reduced row echelon form
 has a zero row, so . Again,  for some , so

 too. 

Example: The  matrix above is invertible, but the  is not. The

det A

A =
⎡
⎣
⎢⎢

2
1
2
1

4
2
2
2

6
1

12
3

8
2
8
9

⎤
⎦
⎥⎥

A =
⎡
⎣

2
−4

2

3
−6

5

−1
2
3

⎤
⎦

n × n n3

n 10 × 10

A det A ≠ 0

A
A I

det I = 1 ≠ 0 det A ≠ 0

A
R det R = 0 det A = k det R k
det A = 0 □

4 × 4 3 × 3



computations illustrate the proof of the theorem.

Question: Is the matrix  invertible?

Determinants and Matrix Operations

Theorems 4.7 to 4.10: Let  be an  matrix. Then:
4.7:  
4.8:  

4.9:  , if  is invertible.

4.10:  

Note: There is no formula for .

Proofs:
4.7: Follows from Theorem 4.3(d), since each row is multiplied by .
4.8: The book uses elementary matrices to prove this, which we haven't
covered, so there is no easy way for us to prove this. I'll do an example
below.

4.9: This follows from 4.8. Since  we have

, so .
4.10: Computing  using expansion along the first row produces the

same thing as computing  by expanding along the first column.
(Proof by induction on the size of the matrix.) 

Example: Illustrate all four statements with  matrices, on board.

True/false: If  and  are invertible, then so is .

True/false: If  is not invertible, then  is not invertible.

Cramer's Rule

Cramer's Rule is a formula for solving a system of  equations in 
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unknowns. It is not efficient computationally, but is useful theoretically.

Notation: If  is an  matrix and , we write  for the

matrix obtained from  by replacing the th column with the vector :

Theorem: Let  be an invertible  matrix and let  be in . Then the

unique solution  of the system  has components

Example 4.16: On board: Use Cramer's rule to solve

Proof: Suppose . Consider . Then

So

But

by expanding along th row. So the claim follows.
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Note: This is not an efficient method. For an  system, you have to
compute  determinants. But the work in computing  determinant is
enough to solve the system by our usual method.

Matrix Inverse using the Adjoint

The matrix

is called the adjoint of .

Theorem: If  is an invertible matrix, then

On board: explain the  special case.

I will explain the general case next lecture.
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