Math 1600B Lecture 26, Section 2, 12 Mar 2014

Announcements:

Today we finish 4.2 and start 4.3. Continue **reading** Section 4.3 for next class and also read **Appendices C and D** on complex numbers and polynomials. Work through recommended homework questions.

Tutorials: Quiz 7 covers 3.7 (just Markov chains), 4.1, and 4.2 up to and including Example 4.13.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Midterm average: 53/70 = 76%

Review Questions

 $\operatorname{\mathsf{True}/\operatorname{\mathsf{false}}}\colon \det(AB) = (\det A)(\det B).$ $\operatorname{\mathsf{True}/\mathsf{false} \colon \det(A + B) = \det A + \det B.}$ **Question:** $\det(3I_2) = 3^2 \det I_2 = 3^2 = 9$ $\textbf{Question:} \begin{vmatrix} 0 & b & c \end{vmatrix} = - |0 \quad b \quad c \end{vmatrix} = - abd \quad \text{(not triangular!)}$ ∣ ∣ ∣ ∣ $\boldsymbol{0}$ 0 *d* 0 *b e a c f* ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ *d* 0 0 *e b* 0 *f c a* ∣ ∣ ∣ ∣

Partial review of last class: Cofactors and Cramer's Rule

For an $n \times n$ matrix A , write A_{ij} for the matrix obtained from A by deleting the i th row and the j th column. Then $\det A_{ij}$ is called the (i,j) -minor of A , and

$$
C_{ij} = (-1)^{i+j} \det A_{ij}.
$$

is called the (i,j) -cofactor of $A.$

 $\mathsf{Notation:}$ If A is an $n \times n$ matrix and $\vec{b} \in \mathbb{R}^n$, we write $A_i(\vec{b})$ for the matrix obtained from A by replacing the i th column with the vector \vec{b} :

$$
A_i(\vec{b})=[\vec{a}_1\cdots\vec{a}_{i-1}\ \vec{b}\ \vec{a}_{i+1}\cdots\vec{a}_n\]
$$

 \vec{b} **Theorem 4.11:** Let A be an invertible $n \times n$ matrix and let \vec{b} be in \mathbb{R}^n . Then the unique solution \vec{x} of the system $A\vec{x}=\vec{b}$ has components

$$
x_i = \frac{\det(A_i(\vec b))}{\det A}\,,\quad \text{for }i=1,\ldots,n
$$

New material: Matrix Inverse using the Adjoint

Suppose A is invertible. We'll use Cramer's rule to find a formula for $X = A^{-1}$. We know that $AX = I$, so the j th column of X satisfies $A\vec{x}_j = \vec{e}_j$. By Cramer's Rule,

$$
x_{ij} = \frac{\det(A_i(\vec{e}_j))}{\det A}
$$

By expanding along the i th column, we see that

$$
\det(A_i(\vec{e}_j))=C_{ji}
$$

So

$$
x_{ij} = \frac{1}{\det A}\,C_{ji},\quad\text{i.e.,}\quad X = \frac{1}{\det A}\left[C_{ij}\right]^T
$$

The matrix

$$
\text{adj}A:=[C_{ji}]=[C_{ij}]^T=\begin{bmatrix}C_{11}&C_{21}&\cdots&C_{n1}\\ C_{12}&C_{22}&\cdots&C_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ C_{1n}&C_{2n}&\cdots&C_{nn}\end{bmatrix}
$$

is called the $\mathop{\sf adjoint}\nolimits$ of $A.$

Theorem 4.12: If A is an invertible matrix, then

$$
A^{-1} = \frac{1}{\det A} \operatorname{adj} A
$$

Example: If $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$, then the cofactors are *c b d* $C_{11}=+\det[d]=+d \qquad C_{12}=-\det[c]=-c$ $C_{21}=-\det[b]=-b \qquad C_{22}=+\det[a]=+a$

so the adjoint matrix is

$$
\text{adj}A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

and

$$
A^{-1} = \frac{1}{\det A} \operatorname{adj} \! A = \frac{1}{\det A} \left[\begin{matrix} d & -b \\ -c & a \end{matrix} \right]
$$

as we saw before.

See Example 4.17 in the text for a 3×3 example. This is not generally a good computational approach. It's importance is theoretical.

Appendix D: Polynomials

You should read this Appendix yourself. I will cover it briefly.

A **polynomial** is a function p of a single variable x that can be written in the form

$$
p(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n
$$

where the coefficients a_i are constants. The highest power of x appearing with a non-zero coefficient is called the **degree** of p .

Examples: $2 - 0.5x + \sqrt{2}x^3$, $\ \ln\left(\frac{e^{5x^3}}{e^{3x}}\right) = \ln(e^{5x^3-3x}) = 5x^3-3x$ Non-examples: \sqrt{x} , $1/x$, $\cos(x)$, $\ln(x)$. *e*3*^x* $e^{5x^3-3x})=5x^3$

(The text gives more examples, non-examples and explanations.)

Addition of polynomials is easy:

$$
(1+2x-4x^3)+(3-3x^2+6x^3)=4+2x-3x^2+2x^3\\
$$

To **multiply** polynomials, you use the distributive law and collect terms:

$$
\begin{aligned} (x+3)(1+2x+4x^2) & = x(1+2x+4x^2)+3(1+2x+4x^2) \\ & = x+2x^2+4x^3+3+6x+12x^2 \\ & = 3+7x+14x^2+4x^3 \end{aligned}
$$

Note that $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)).$

If f and g are polynomials, sometimes you can find a polynomial q such that $f(x) = g(x)q(x)$, and sometimes you can't. If you can, then we say that g is a $\operatorname{\textsf{factor}}$ of f .

Example: Is $(x-2)$ a factor of x^2-x-2 ?

Solution: If it is, then the quotient has degree 1. So suppose $\frac{1}{x^2-x-2}=(x-2)(ax+b).$ Then $ax^2=x^2$, so $a=1.$ And $-x = -2ax + bx = -2x + bx$, so $b=1$. Check the constant term: $-2=-2b$. It works, so $x^2-x-2=(x-2)(x+1)$, and the answer is "yes".

Example: Is $(x-2)$ a factor of x^2+x-2 ?

Solution: If it is, then the quotient has degree 1. So suppose $\frac{1}{x^2 + x - 2} = (x - 2)(ax + b).$ Then $ax^2 = x^2$, so $a = 1.$ And $x = -2ax + bx = -2x + bx$, so $b = 3$. Check the constant term: $-2=-2b$. Nope, so the answer is "no".

The above ad hoc method works for a degree 1 polynomial. For higher degrees, one can use long division (see Example D.4). But the degree 1 case will be most important to us, and is made even simpler by the following result:

Theorem D.2 (The Factor Theorem): Let f be a polynomial and let a be a constant. Then $f(a) = 0$ if and only if $x - a$ is a factor of $f(x).$

When $f(a) = 0$, we say that a is a **zero** of f or a **root** of f .

It is clear that if $f(x) = (x-a)q(x)$, then $f(a) = 0.$ The book explains the other direction.

Once you find a zero, you can use the ad hoc method shown above to find the other factor q . We'll see more examples soon.

Our interest will be in finding all zeros of a polynomial f of degree n . By the above, if you find a zero a , then $f(x) = (x-a)q(x)$, where q has degree $n-1.$ If there is another root b of f , it must be a root of q , and so q will factor as $q(x) = (x-b)r(x)$, where r has degree $n-2.$ Since the degrees are going down by one, there can be at most n distinct roots in total:

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree n has at most n distinct roots.

Section 4.3: Eigenvalues and Eigenvectors

Recall from Section 4.1:

 $\boldsymbol{\mathsf{Definition:}}$ Let A be an $n \times n$ matrix. A scalar λ (lambda) is called an $\bf e$ igenvalue of A if there is a nonzero vector \vec{x} such that $A\vec{x}=\lambda \vec{x}$. Such a vector \vec{x} is called an $\bf{eigenvector}$ of A corresponding to $\lambda.$

The eigenvectors for a given eigenvalue λ are the **nonzero** solutions to $(A - \lambda I)\vec{x} = \vec{0}.$

Definition: The collection of **all** solutions to $(A - \lambda I)\vec{x} = \vec{0}$ is a subspace called the $\bf eigenspace$ of λ and is denoted $E_\lambda.$ In other words,

 $E_{\lambda} = \text{null}(A - \lambda I).$

It consists of the eigenvectors plus the zero vector.

By the fundamental theorem of invertible matrices, $A-\lambda I$ has a nontrivial null space if and only if it is not invertible, and we now know that this is the case if and only if $\det(A - \lambda I) = 0.$

The expression $\det(A - \lambda I)$ is always a polynomial in $\lambda.$ For example, when $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$, *c b d* $\det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \end{vmatrix} = (a - \lambda)(d - \lambda) - bc$ ∣ ∣ $a-\lambda$ *c b* $d - \lambda$ ∣ ∣ ∣

$$
=\lambda ^{2}-(a+d)\lambda +\left(ad-bc\right)
$$

If A is 3×3 , then $\det(A - \lambda I)$ is equal to

$$
(a_{11}-\lambda) \bigg| \begin{array}{cc} a_{22}-\lambda & a_{23} \\ a_{32} & a_{33}-\lambda \end{array} \bigg| -a_{12} \bigg| \begin{array}{cc} a_{21} & a_{23} \\ a_{31} & a_{33}-\lambda \end{array} \bigg| +a_{13} \bigg| \begin{array}{cc} a_{21} & a_{22}-\lambda \\ a_{31} & a_{32} \end{array} \bigg|
$$

which is a degree 3 polynomial in $\lambda.$

Similarly, if A is $n\times n$, $\det(A-\lambda I)$ will be a degree n polynomial in $\lambda.$ It is called the **characteristic polynomial** of A , and $\det(A - \lambda I) = 0$ is called the **characteristic equation**.

Finding eigenvalues and eigenspaces: Let A be an $n \times n$ matrix.

1. Compute the characteristic polynomial $\det(A - \lambda I).$ 2. Find the eigenvalues of A by solving the characteristic equation $\det(A-\lambda I)=0.$ 3. For each eigenvalue λ , find a basis for $E_\lambda = \operatorname{null}(A - \lambda I)$ by solving the system $(A-\lambda I)\vec{x}=\vec{0}.$

So we need to get good at solving polynomial equations. Solutions are called **zeros** or **roots**. We saw above that a degree n polynomial has at most n distinct roots. Therefore:

 $\bf Theorem:$ An $n\times n$ matrix A has at most n distinct eigenvalues.

Example 4.18: Find the eigenvalues and eigenspaces of

 $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$ $\overline{}$ 0 0 2 1 0 -5 0 1 4 \mathbf{I} \mathbf{I}

Solution: 1. On board, compute the characteristic polynomial:

$$
\det(A-\lambda I)=-\lambda^3+4\lambda^2-5\lambda+2
$$

2. To find the roots, it is often worth trying a few small integers to start. We see that $\lambda = 1$ works. So by the factor theorem, we know $\lambda - 1$ is a factor:

$$
-\lambda^3+4\lambda^2-5\lambda+2=(\lambda-1)(-\lambda^2+3\lambda-2)
$$

Now we need to find roots of $-\lambda^2 + 3\lambda - 2$. Again, $\lambda = 1$ works, and this factors as $-(\lambda-1)(\lambda-2)$. So

$$
\det(A-\lambda I)=-\lambda^3+4\lambda^2-5\lambda+2=-(\lambda-1)^2(\lambda-2)
$$

and the roots are $\lambda=1$ and $\lambda=2.$

To be continued...