
Math 1600B Lecture 26, Section 2, 12 Mar 2014

Announcements:

Today we finish 4.2 and start 4.3. Continue reading Section 4.3 for next
class and also read Appendices C and D on complex numbers and
polynomials. Work through recommended homework questions.

Tutorials: Quiz 7 covers 3.7 (just Markov chains), 4.1, and 4.2 up to and
including Example 4.13.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Midterm average: 53/70 = 76%

Review Questions

True/false: .

True/false: .

Question:

Question:

Partial review of last class: Cofactors and Cramer's Rule

For an  matrix , write  for the matrix obtained from  by deleting

the th row and the th column. Then  is called the -minor of

, and

is called the -cofactor of .

det(AB) = (det A)(det B)

det(A + B) = det A + det B

det(3 ) = det = = 9I2 32 I2 32

= − = −abd (not triangular!)
∣

∣

∣
∣

0
0
d

0
b

e

a

c

f

∣

∣

∣
∣

∣

∣

∣
∣

d

0
0

e

b

0

f

c

a

∣

∣

∣
∣

n × n A Aij A
i j det Aij (i, j)

A

= (−1 det .Cij )i+j
Aij

(i, j) A



Notation: If  is an  matrix and , we write  for the

matrix obtained from  by replacing the th column with the vector :

Theorem 4.11: Let  be an invertible  matrix and let  be in .

Then the unique solution  of the system  has components

New material: Matrix Inverse using the Adjoint

Suppose  is invertible. We'll use Cramer's rule to find a formula for

. We know that , so the th column of  satisfies

. By Cramer's Rule,

By expanding along the th column, we see that

So

The matrix

is called the adjoint of .

A n × n ∈b ⃗ Rn ( )Ai b ⃗ 

A i b ⃗ 

( ) = [ ⋯ ⋯ ]Ai b ⃗ a⃗ 1 a⃗ i−1 b ⃗ a⃗ i+1 a⃗ n

A n × n b ⃗ Rn

x⃗ A =x⃗ b ⃗ 

= , for i = 1, … , nxi
det( ( ))Ai b ⃗ 

det A

A

X = A−1 AX = I j X
A =x⃗ j e ⃗ j

=xij

det( ( ))Ai e ⃗ j
det A

i

det( ( )) =Ai e ⃗ j Cji

= , i.e., X = [xij
1
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Cji

1
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Cij]T
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Theorem 4.12: If  is an invertible matrix, then

Example: If , then the cofactors are

so the adjoint matrix is

and

as we saw before.

See Example 4.17 in the text for a  example. This is not generally a
good computational approach. It's importance is theoretical.

Appendix D: Polynomials

You should read this Appendix yourself. I will cover it briefly.

A polynomial is a function  of a single variable  that can be written in
the form

where the coefficients  are constants. The highest power of  appearing
with a non-zero coefficient is called the degree of .
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Examples: , 

Non-examples: , , , .

(The text gives more examples, non-examples and explanations.)

Addition of polynomials is easy:

To multiply polynomials, you use the distributive law and collect terms:

Note that .

If  and  are polynomials, sometimes you can find a polynomial  such that
, and sometimes you can't. If you can, then we say that 

is a factor of .

Example: Is  a factor of ?

Solution: If it is, then the quotient has degree 1. So suppose

. Then , so . And
, so . Check the constant term:

. It works, so , and the answer is
"yes".

Example: Is  a factor of ?

Solution: If it is, then the quotient has degree 1. So suppose

. Then , so . And
, so . Check the constant term:

. Nope, so the answer is "no".

2 − 0.5x + 2√ x3 ln( ) = ln( ) = 5 − 3xe5x3

e3x e5 −3xx3
x3

x√ 1/x cos(x) ln(x)

(1 + 2x − 4 ) + (3 − 3 + 6 ) = 4 + 2x − 3 + 2x3 x2 x3 x2 x3

(x + 3)(1 + 2x + 4 )x2 = x(1 + 2x + 4 ) + 3(1 + 2x + 4 )x2 x2

= x + 2 + 4 + 3 + 6x + 12x2 x3 x2

= 3 + 7x + 14 + 4x2 x3

deg(f(x)g(x)) = deg(f(x)) + deg(g(x))

f g q
f(x) = g(x)q(x) g

f

(x − 2) − x − 2x2

− x − 2 = (x − 2)(ax + b)x2 a =x2 x2 a = 1
−x = −2ax + bx = −2x + bx b = 1
−2 = −2b − x − 2 = (x − 2)(x + 1)x2

(x − 2) + x − 2x2

+ x − 2 = (x − 2)(ax + b)x2 a =x2 x2 a = 1
x = −2ax + bx = −2x + bx b = 3
−2 = −2b



The above ad hoc method works for a degree 1 polynomial. For higher
degrees, one can use long division (see Example D.4). But the degree 1
case will be most important to us, and is made even simpler by the
following result:

Theorem D.2 (The Factor Theorem): Let  be a polynomial and let  be
a constant. Then  if and only if  is a factor of .

When , we say that  is a zero of  or a root of .

It is clear that if , then . The book explains the
other direction.

Once you find a zero, you can use the ad hoc method shown above to find
the other factor . We'll see more examples soon.

Our interest will be in finding all zeros of a polynomial  of degree . By the
above, if you find a zero , then , where  has degree

. If there is another root  of , it must be a root of , and so  will
factor as , where  has degree . Since the degrees
are going down by one, there can be at most  distinct roots in total:

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of
degree  has at most  distinct roots.

Section 4.3: Eigenvalues and Eigenvectors

Recall from Section 4.1:

Definition: Let  be an  matrix. A scalar  (lambda) is called an
eigenvalue of  if there is a nonzero vector  such that . Such a
vector  is called an eigenvector of  corresponding to .

The eigenvectors for a given eigenvalue  are the nonzero solutions to

.

Definition: The collection of all solutions to  is a subspace
called the eigenspace of  and is denoted . In other words,

f a
f(a) = 0 x − a f(x)

f(a) = 0 a f f

f(x) = (x − a)q(x) f(a) = 0

q

f n
a f(x) = (x − a)q(x) q

n − 1 b f q q
q(x) = (x − b)r(x) r n − 2

n

n n

A n × n λ
A x⃗ A = λx⃗ x⃗ 

x⃗ A λ

λ

(A − λI) =x⃗ 0⃗ 

(A − λI) =x⃗ 0⃗ 
λ Eλ



It consists of the eigenvectors plus the zero vector.

By the fundamental theorem of invertible matrices,  has a nontrivial
null space if and only if it is not invertible, and we now know that this is the
case if and only if .

The expression  is always a polynomial in . For example,

when ,

If  is , then  is equal to

which is a degree 3 polynomial in .

Similarly, if  is ,  will be a degree  polynomial in . It
is called the characteristic polynomial of , and  is
called the characteristic equation.

Finding eigenvalues and eigenspaces: Let  be an  matrix.

1. Compute the characteristic polynomial .
2. Find the eigenvalues of  by solving the characteristic equation

.
3. For each eigenvalue , find a basis for  by solving

the system .

So we need to get good at solving polynomial equations. Solutions are
called zeros or roots. We saw above that a degree  polynomial has at
most  distinct roots. Therefore:

= null(A − λI).Eλ

A − λI

det(A − λI) = 0
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Theorem: An  matrix  has at most  distinct eigenvalues.

Example 4.18: Find the eigenvalues and eigenspaces of

.

Solution: 1. On board, compute the characteristic polynomial:

2. To find the roots, it is often worth trying a few small integers to start. We
see that  works. So by the factor theorem, we know  is a factor:

Now we need to find roots of . Again,  works, and this
factors as . So

and the roots are  and .

To be continued...
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det(A − λI) = − + 4 − 5λ + 2λ3 λ2

λ = 1 λ − 1

− + 4 − 5λ + 2 = (λ − 1)(− + 3λ − 2)λ3 λ2 λ2

− + 3λ − 2λ2 λ = 1
−(λ − 1)(λ − 2)

det(A − λI) = − + 4 − 5λ + 2 = −(λ − 1 (λ − 2)λ3 λ2 )2

λ = 1 λ = 2


