Math 1600B Lecture 27, Section 2, 14 March 2014

Announcements:

Today we (mostly) finish 4.3. **Read** Appendix C and section 4.4 for next class. Work through recommended homework questions.

Tutorials: Quiz 8 covers 4.2 and 4.3, including the parts of Appendix D that we covered.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Midterm average: 53/70 = 76%

 \boldsymbol{Q} uestion: If P is invertible, how do $\det A$ and $\det(P^{-1}AP)$ compare?

They are equal:

$$
\begin{aligned} \det(P^{-1}AP)&=\det(P^{-1})\det(A)\det(P)\\ &=\frac{1}{\det(P)}\det(A)\det(P)=\det A. \end{aligned}
$$

Partial review of last class: Section 4.3

 ${\bf Definition:}$ If A is $n \times n$, $\det(A - \lambda I)$ will be a degree n polynomial in $\lambda.$ It is called the <code>characteristic polynomial</code> of A , and $\det(A - \lambda I) = 0$ is called the **characteristic equation**.

By the fundamental theorem of invertible matrices, the solutions to the characteristic equation are exactly the eigenvalues.

Finding eigenvalues and eigenspaces: Let A be an $n \times n$ matrix.

- 1. Compute the characteristic polynomial $\det(A \lambda I).$
- 2. Find the eigenvalues of A by solving the characteristic equation

 $\det(A-\lambda I)=0.$ 3. For each eigenvalue λ , find a basis for the eigenspace $E_\lambda = \operatorname{null}(A - \lambda I)$ by solving the system $(A - \lambda I)\vec{x} = \vec{0}.$

So we need to get good at solving polynomial equations. Solutions are called **zeros** or **roots**.

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree n has at most n distinct roots.

Therefore:

 $\bf Theorem:$ An $n\times n$ matrix A has at most n distinct eigenvalues.

Also:

Theorem D.2 (The Factor Theorem): Let f be a polynomial and let a be a constant. Then a is a zero of $f(x)$ (i.e. $f(a) = 0$) if and only if $x - a$ is a factor of $f(x)$ (i.e. $f(x) = (x-a)g(x)$ for some polynomial g).

New material: 4.3 continued

Example 4.18: Find the eigenvalues and eigenspaces of

Solution: 1. Last time, we computed the characteristic polynomial:

$$
\det(A-\lambda I)=-\lambda^3+4\lambda^2-5\lambda+2
$$

2. Then we found that

$$
-\lambda^3 + 4\lambda^2 - 5\lambda + 2 = -(\lambda - 1)^2(\lambda - 2)
$$

with roots $\lambda=1$ and $\lambda=2.$

3. To find the $\lambda=1$ eigenspace, we do row reduction:

$$
[A-I | 0] = \left[\begin{array}{rrr} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 2 & -5 & 3 & 0 \end{array}\right] \rightarrow \left[\begin{array}{rrr} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]
$$

We find that $x_3 = t$ is free and $x_1 = x_2 = x_3$, so

$$
E_1 = \left\{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \right\} = \mathrm{span} \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right)
$$

So $\mid 1\mid$ is a basis of the eigenspace corresponding to $\lambda=1.$ Check! $\overline{}$ $\overline{}$ 1 1 1 $\overline{}$ $\Big\{ \begin{array}{l} \textsf{is a basis of the eigenspace corresponding to } \lambda=1. \end{array} \right.$

Finding a basis for E_2 is similar; see text.

A root a of a polynomial f implies that $f(x) = (x-a)g(x)$. Sometimes, a is also a root of $g(x)$, as we found above. Then $f(x) = (x-a)^2 h(x)$. The largest k such that $\left(x - a\right)^k$ is a factor of f is called the **multiplicity** of the root a in f .

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

In the previous example, $\lambda=1$ has algebraic multiplicity 2 and $\lambda=2$ has algebraic multiplicity 1.

We also define the **geometric multiplicity** of an eigenvalue λ to be the dimension of the corresponding eigenspace. In the previous example, $\lambda=1$ has geometric multiplicity 1 (and so does $\lambda=2$).

Example 4.19: Find the eigenvalues and eigenspaces of

 $A=\left[\begin{array}{ccc} -1 & 0 & 1\ 3 & 0 & -3 \end{array}\right]$. Do partially, on board. $\overline{}$ -1 3 1 0 0 0 1 -3 -1 $\overline{}$ $\overline{}$

In this case, we find that $\lambda=0$ has algebraic multiplicity 2 and geometric multiplicity 2.

These multiplicities will be important in Section 4.4.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main diagonal (repeated according to their algebraic multiplicity).

Example: If
$$
A = \begin{bmatrix} 1 & 0 & 0 \ 2 & 3 & 0 \ 4 & 5 & 1 \end{bmatrix}
$$
, then
\n
$$
\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 \ 2 & 3 - \lambda & 0 \ 4 & 5 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 (3 - \lambda),
$$

so the eigenvalues are $\lambda = 1$ (with algebraic multiplicity 2) and $\lambda = 3$ (with algebraic multiplicity 1).

Question: What are the eigenvalues of a diagonal matrix?

The eigenvalues are the diagonal entries.

Question: What are the eigenvalues of $\begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix}$? 1 4 0

The characteristic polynomial is

$$
\left|\begin{matrix}-\lambda & 4 \\ 1 & -\lambda\end{matrix}\right|=\lambda^2-4=(\lambda-2)(\lambda+2),
$$

so the eigenvalues are 2 and -2. Trick question.

Question: How can we tell whether a matrix A is invertible using eigenvalues?

 \boldsymbol{A} is invertible if and only if 0 is not an eigenvalue, because 0 being an eigenvalue is equivalent to $\operatorname{null}(A)$ being non-trivial, which is equivalent to A not being invertible, by the fundamental theorem.

So we can extend the fundamental theorem with two new entries:

Theorem 4.17: Let A be an $n \times n$ matrix. The following are equivalent:

- a. A is invertible.
- b. $A\vec{x}=\vec{b}$ has a unique solution for every $\vec{b}\in\mathbb{R}^n$.
- c. $A\vec{x}=\vec{0}$ has only the trivial (zero) solution.
- d. The reduced row echelon form of A is $I_n.$
- f. $\mathrm{rank}(A)=n$
- g. $\operatorname{nullity}(A) = 0$
- h. The columns of A are linearly independent.
- i. The columns of A span \mathbb{R}^n .
- j. The columns of A are a basis for \mathbb{R}^n .
- k. The rows of A are linearly independent.
- l. The rows of A span \mathbb{R}^n .
- m. The rows of A are a basis for $\mathbb{R}^n.$
- n. $\det A \neq 0$
- ${\mathsf o}.$ 0 is not an eigenvalue of A

Next: how to become a Billionaire using the material from this course.