Math 1600B Lecture 27, Section 2, 14 March 2014

Announcements:

Today we (mostly) finish 4.3. **Read** Appendix C and section 4.4 for next class. Work through recommended homework questions.

Tutorials: Quiz 8 covers 4.2 and 4.3, including the parts of Appendix D that we covered.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Midterm average: 53/70 = 76%

Question: If P is invertible, how do $\det A$ and $\det(P^{-1}AP)$ compare?

They are equal:

$$\det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) \ = rac{1}{\det(P)}\det(A)\det(P) = \det A.$$

Partial review of last class: Section 4.3

Definition: If A is $n \times n$, $det(A - \lambda I)$ will be a degree n polynomial in λ . It is called the **characteristic polynomial** of A, and $det(A - \lambda I) = 0$ is called the **characteristic equation**.

By the fundamental theorem of invertible matrices, the solutions to the characteristic equation are exactly the eigenvalues.

Finding eigenvalues and eigenspaces: Let A be an $n \times n$ matrix.

- 1. Compute the characteristic polynomial $\det(A \lambda I)$.
- 2. Find the eigenvalues of A by solving the characteristic equation

 $\det(A - \lambda I) = 0.$ 3. For each eigenvalue λ , find a basis for the eigenspace $E_{\lambda} = \operatorname{null}(A - \lambda I)$ by solving the system $(A - \lambda I)\vec{x} = \vec{0}.$

So we need to get good at solving polynomial equations. Solutions are called **zeros** or **roots**.

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree n has at most n distinct roots.

Therefore:

Theorem: An $n \times n$ matrix A has at most n distinct eigenvalues.

Also:

Theorem D.2 (The Factor Theorem): Let f be a polynomial and let a be a constant. Then a is a zero of f(x) (i.e. f(a) = 0) if and only if x - a is a factor of f(x) (i.e. f(x) = (x - a)g(x) for some polynomial g).

New material: 4.3 continued

Example 4.18: Find the eigenvalues and eigenspaces of

	0	1	0	
A =	0	0	1	
	$\lfloor 2$	-5	4	

Solution: 1. Last time, we computed the characteristic polynomial:

$$\det(A-\lambda I)=-\lambda^3+4\lambda^2-5\lambda+2$$

2. Then we found that

$$-\lambda^3+4\lambda^2-5\lambda+2=-(\lambda-1)^2(\lambda-2)$$

with roots $\lambda=1$ and $\lambda=2.$

3. To find the $\lambda=1$ eigenspace, we do row reduction:

$$\left[A-I \mid 0
ight] = \left[egin{array}{cc|c} -1 & 1 & 0 & 0 \ 0 & -1 & 1 & 0 \ 2 & -5 & 3 & 0 \end{array}
ight]
ightarrow \left[egin{array}{cc|c} 1 & 0 & -1 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

We find that $x_3=t$ is free and $x_1=x_2=x_3$, so

$$E_1 = \left\{ egin{bmatrix} t \ t \ t \end{bmatrix}
ight\} = ext{span} \left(egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}
ight)$$

So $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ is a basis of the eigenspace corresponding to $\lambda = 1$. Check!

Finding a basis for E_2 is similar; see text.

A root a of a polynomial f implies that f(x) = (x - a)g(x). Sometimes, a is also a root of g(x), as we found above. Then $f(x) = (x - a)^2 h(x)$. The largest k such that $(x - a)^k$ is a factor of f is called the **multiplicity** of the root a in f.

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

In the previous example, $\lambda=1$ has algebraic multiplicity 2 and $\lambda=2$ has algebraic multiplicity 1.

We also define the **geometric multiplicity** of an eigenvalue λ to be the dimension of the corresponding eigenspace. In the previous example, $\lambda = 1$ has geometric multiplicity 1 (and so does $\lambda = 2$).

Example 4.19: Find the eigenvalues and eigenspaces of

 $A=egin{bmatrix} -1&0&1\3&0&-3\1&0&-1 \end{bmatrix}$. Do partially, on board.

In this case, we find that $\lambda=0$ has algebraic multiplicity 2 and geometric multiplicity 2.

These multiplicities will be important in Section 4.4.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main diagonal (repeated according to their algebraic multiplicity).

Example: If
$$A = egin{bmatrix} 1 & 0 & 0 \ 2 & 3 & 0 \ 4 & 5 & 1 \end{bmatrix}$$
, then $\det(A - \lambda I) = egin{bmatrix} 1 - \lambda & 0 & 0 \ 2 & 3 - \lambda & 0 \ 4 & 5 & 1 - \lambda \end{bmatrix} = (1 - \lambda)^2 (3 - \lambda),$

so the eigenvalues are $\lambda=1$ (with algebraic multiplicity 2) and $\lambda=3$ (with algebraic multiplicity 1).

Question: What are the eigenvalues of a diagonal matrix?

The eigenvalues are the diagonal entries.

Question: What are the eigenvalues of $\begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix}$?

The characteristic polynomial is

$$egin{array}{cc|c} -\lambda & 4 \ 1 & -\lambda \end{array} = \lambda^2 - 4 = (\lambda - 2)(\lambda + 2),$$

so the eigenvalues are 2 and -2. Trick question.

Question: How can we tell whether a matrix A is invertible using eigenvalues?

A is invertible if and only if 0 is not an eigenvalue, because 0 being an eigenvalue is equivalent to $\operatorname{null}(A)$ being non-trivial, which is equivalent to A not being invertible, by the fundamental theorem.

So we can extend the fundamental theorem with two new entries:

Theorem 4.17: Let A be an n imes n matrix. The following are equivalent:

- a. A is invertible.
- b. $Aec{x}=ec{b}$ has a unique solution for every $ec{b}\in \mathbb{R}^n.$
- c. $Aec{x}=ec{0}$ has only the trivial (zero) solution.
- d. The reduced row echelon form of A is $I_n.$
- f. $\mathrm{rank}(A)=n$
- g. $\operatorname{nullity}(A) = 0$
- h. The columns of A are linearly independent.
- i. The columns of A span $\mathbb{R}^n.$
- j. The columns of A are a basis for $\mathbb{R}^n.$
- k. The rows of A are linearly independent.
- I. The rows of A span \mathbb{R}^n .
- m. The rows of A are a basis for $\mathbb{R}^n.$
- n. det $A \neq 0$
- o. 0 is not an eigenvalue of A

Next: how to become a Billionaire using the material from this course.