Math 1600B Lecture 28, Section 2, 17 Mar 2014

Announcements:

Today we finish 4.3 and discuss Appendix C. **Read** Section 4.4 for next class. Work through recommended homework questions.

Tutorials: Quiz 8 covers 4.2, 4.3, and the parts of Appendix D that we covered in class.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Office hour: Wednesday, 10:30-11:15, MC103B. (Today's hour is cancelled.)

Brief review of last lecture:

The **characteristic polynomial** of a square matrix A is $det(A - \lambda I)$, which is a polynomial in λ . The roots/zeros of this polynomial are the eigenvalues of A.

A root *a* of a polynomial *f* implies that f(x) = (x - a)g(x). Sometimes, *a* is also a root of g(x). Then $f(x) = (x - a)^2 h(x)$. The largest *k* such that $(x - a)^k$ is a factor of *f* is called the **multiplicity** of the root *a* in *f*.

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

For example, if $\det(A - \lambda I) = -(\lambda - 1)^2(\lambda - 2)$, then $\lambda = 1$ is an eigenvalue with algebraic multiplicity 2, and $\lambda = 2$ is an eigenvalue with algebraic multiplicity 1.

We also define the **geometric multiplicity** of an eigenvalue λ to be the dimension of the corresponding eigenspace.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main diagonal (repeated according to their algebraic multiplicity).

Theorem 4.17: Let A be an $n \times n$ matrix. The following are equivalent:

a. A is invertible.

- b. $Aec{x}=ec{b}$ has a unique solution for every $ec{b}\in\mathbb{R}^n.$
- c. $A\vec{x} = \vec{0}$ has only the trivial (zero) solution.
- d. The reduced row echelon form of A is I_n .

f. $\operatorname{rank}(A) = n$ q. nullity(A) = 0h. The columns of A are linearly independent. i. The columns of A span \mathbb{R}^n . j. The columns of A are a basis for \mathbb{R}^n . k. The rows of A are linearly independent. I. The rows of A span \mathbb{R}^n . m. The rows of A are a basis for \mathbb{R}^n . **n**. det $A \neq 0$ **o**. 0 is not an eigenvalue of A

New Material: 4.3: Eigenvalues of powers and inverses

Suppose \vec{x} is an eigenvector of A with eigenvalue λ . What can we say about A^2 or A^3 ? If A is invertible, how about the eigenvalues/vectors of A^{-1} ? On board.

We've shown:

Theorem 4.18: If \vec{x} is an eigenvector of A with eigenvalue λ , then \vec{x} is an eigenvector of A^k with eigenvalue λ^k . This holds for each integer k > 0, and also for k < 0 if A is invertible.

In contrast to some other recent results, this one is very useful computationally:

Example 4.21: Compute $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}^{10} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$.

Solution: By finding the eigenspaces of the matrix, we can show that

$$\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -\begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
Write $A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$, $\vec{x} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$, $\vec{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Since $\vec{x} = 3\vec{v}_1 + 2\vec{v}_2$ we have

$$egin{aligned} &A^{10}ec{x} = A^{10}(3ec{v}_1+2ec{v}_2) = 3A^{10}ec{v}_1+2A^{10}ec{v}_2\ &= 3(-1)^{10}ec{v}_1+2(2^{10})ec{v}_2 = egin{bmatrix} 3+2^{11}\ -3+2^{12} \end{bmatrix} \end{aligned}$$

Much faster than repeated matrix multiplication, especially if 10 is replaced with 100.

This raises an interesting question. In the example, the eigenvectors were a basis for \mathbb{R}^2 , so we could use this method to compute $A^k \vec{x}$ for any \vec{x} . However, last class we saw a 3×3 matrix with two one-dimensional eigenspaces, so the eigenvectors didn't span \mathbb{R}^3 . We will study this further in Section 4.4, but right now we can answer a related question about linear independence.

Theorem: If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$, then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are linearly independent.

Proof in case m = 2: If \vec{v}_1 and \vec{v}_2 are linearly dependent, then $\vec{v}_1 = c\vec{v}_2$ for some c. Therefore

$$Aec v_1 = A\,cec v_2 = cAec v_2$$

SO

 $\lambda_1ec v_1=c\lambda_2ec v_2=\lambda_2ec v_1$

Since $ec{v}_1
eq ec{0}$, this forces $\lambda_1 = \lambda_2$, a contradiction. $\ \Box$

The general case is very similar; see text.

Appendix C: Complex numbers

Sometimes a polynomial has complex numbers as its roots, so we need to learn a bit about them.

A **complex number** is a number of the form a + bi, where a and b are real numbers and i is a symbol such that $i^2 = -1$.

If z = a + bi, we call a the **real part** of z, written $\operatorname{Re} z$, and b the **imaginary part** of z, written $\operatorname{Im} z$.

Complex numbers a + bi and c + di are **equal** if a = c and b = d.

On board: sketch complex plane and various points.

Addition: (a + bi) + (c + di) = (a + c) + (b + d)i, like vector addition.

Multiplication: (a + bi)(c + di) = (ac - bd) + (ad + bc)i. (Explain.)

Examples: (1+2i) + (3+4i) = 4+6i

$$egin{aligned} (1+2i)(3+4i) &= 1(3+4i) + 2i(3+4i) = 3+4i+6i+8i^2\ &= (3-8)+10i = -5+10i\ &5(3+4i) = 15+20i\ &(-1)(c+di) = -c-di \end{aligned}$$

The **conjugate** of z = a + bi is $\overline{z} = a - bi$. Reflection in real axis. We'll use this for division of complex numbers in a moment.

Theorem (Properties of conjugates): Let *w* and *z* be complex numbers. Then:

- 1. $\overline{\bar{z}} = z$
- 2. $\overline{w+z} = \overline{w} + \overline{z}$
- 3. $\overline{wz} = \overline{w}\overline{z}$ (typo in text) (good exercise)
- 4. If z
 eq 0, then w/z = ar w/ar z (see below for division)
- 5. z is **real** if and only if $\overline{z} = z$

The **absolute value** or **modulus** |z| of z = a + bi is

 $|z|=|a+bi|=\sqrt{a^2+b^2}, \hspace{1em} ext{the distance from the origin.}$

Note that

$$zar{z} = (a+bi)(a-bi) = a^2 - abi + abi - b^2i^2 = a^2 + b^2 = |z|^2$$

This means that for z
eq 0

$$rac{zar{z}}{\leftert z
ightert^2} = 1 \quad ext{so} \quad z^{-1} = rac{ar{z}}{\leftert z
ightert^2}$$

This can be used to compute quotients of complex numbers:

$$rac{w}{z}=rac{w}{z}rac{ar{z}}{ar{z}}=rac{war{z}}{\leftert z
ightert ^{2}}$$

Example:

$$rac{-1+2i}{3+4i} = rac{-1+2i}{3+4i} \ rac{3-4i}{3-4i} = rac{5+10i}{3^2+4^2} = rac{5+10i}{25} = rac{1}{5} + rac{2}{5} i$$

Theorem (Properties of absolute value): Let *w* and *z* be complex numbers.

Then:

1. |z| = 0 if and only if z = 0. 2. $|\overline{z}| = |z|$ 3. |wz| = |w||z| (good exercise!) 4. If $z \neq 0$, then |w/z| = |w|/|z|. In particular, |1/z| = 1/|z|. 5. $|w + z| \le |w| + |z|$.

Polar Form

A complex number z = a + bi can also be expressed in **polar coordinates** (r, θ) , where $r = |z| \ge 0$ and θ is such that

 $a = r \cos \theta$ and $b = r \sin \theta$ (sketch)

Then

 $z = r \cos \theta + (r \sin \theta)i = r(\cos \theta + i \sin \theta)$

To compute θ , note that

 $an heta = \sin heta / \cos heta = b/a.$

But this doesn't pin down θ , since $\tan(\theta + \pi) = \tan \theta$. You must choose θ based on what quadrant z is in. There is a unique correct θ with $-\pi < \theta \le \pi$, and this is called the **principal argument** of z and is written $\operatorname{Arg} z$ (or $\operatorname{arg} z$).

Examples: If z = 1 + i, then $r = |z| = \sqrt{1^2 + 1^2} = \sqrt{2}$. By inspection, $\theta = \pi/4 = 45^{\circ}$. We also know that $\tan \theta = 1/1 = 1$, which gives $\theta = \pi/4 + k\pi$, and k = 0 gives the right quadrant.

We write $\operatorname{Arg} z = \pi/4$ and $z = \sqrt{2}(\cos \pi/4 + i \sin \pi/4)$.

If w = -1 - i, then $r = \sqrt{2}$ and by inspection $\theta = -3\pi/4 = -135^{\circ}$. We *still* have $\tan \theta = -1/-1 = 1$, which gives $\theta = \pi/4 + k\pi$, but now we must take k odd to land in the right quadrant. Taking k = -1 gives the principal argument:

$${
m Arg}\,w = -3\pi/4 \quad {
m and} \quad w = \sqrt{2}(\cos(-3\pi/4) + i\sin(-3\pi/4)).$$

Multiplication and division in polar form

Let

$$z_1=r_1(\cos heta_1+i\sin heta_1) \quad ext{and} \quad z_2=r_2(\cos heta_2+i\sin heta_2).$$

Then

$$egin{aligned} &z_1z_2=r_1r_2(\cos heta_1+i\sin heta_1)(\cos heta_2+i\sin heta_2)\ &=r_1r_2[(\cos heta_1\cos heta_2-\sin heta_1\sin heta_2)+i(\sin heta_1\cos heta_2+\cos heta_1\sin heta_2)]\ &=r_1r_2[\cos(heta_1+ heta_2)+i\sin(heta_1+ heta_2)] \end{aligned}$$

So

$$|z_1z_2|=|z_1||z_2| \quad ext{and} \quad \operatorname{Arg}(z_1z_2)=\operatorname{Arg} z_1+\operatorname{Arg} z_2$$

(up to multiples of 2π). Sketch on board. See also Example C.4.

In particular, if $z = r(\cos \theta + i \sin \theta)$, then $z^2 = r^2(\cos(2\theta) + i \sin(2\theta))$. It follows that the two **square roots** of z are

$$\pm \sqrt{r}(\cos(heta/2)+i(\sin heta/2))$$

The remaining material is for your interest only

Repeating this argument gives:

Theorem (De Moivre's Theorem): If $z = r(\cos \theta + i \sin \theta)$ and n is a positive integer, then

$$z^n = r^n(\cos(n heta) + i\sin(n heta))$$

When r
eq 0, this also holds for n negative. In particular,

$$rac{1}{z} = rac{1}{r} \ (\cos heta - i \sin heta).$$

Example C.5: Find $(1 + i)^6$.

Solution: We saw that $1+i=\sqrt{2}(\cos(\pi/4)+i\sin(\pi/4))$. So

$$egin{aligned} &(1+i)^6 = (\sqrt{2})^6(\cos(6\pi/4) + i\sin(6\pi/4))\ &= 8(\cos(3\pi/2) + i\sin(3\pi/2))\ &= 8(0+i(-1)) = -8i \end{aligned}$$

*n*th roots

De Moivre's Theorem also lets us compute nth roots:

Theorem: Let $z = r(\cos \theta + i \sin \theta)$ and let *n* be a positive integer. Then *z* has exactly *n* distinct *n*th roots, given by

$$r^{1/n}iggl[\cosiggl(rac{ heta+2k\pi}{n}iggr)+i\siniggl(rac{ heta+2k\pi}{n}iggr)iggr]$$

for $k=0,1,\ldots,n-1.$

These are equally spaced points on the circle of radius $r^{1/n}$.

Example: The cube roots of -8: Since $-8 = 8(\cos(\pi) + i\sin(\pi))$, we have

$$(-8)^{1/3} = 8^{1/3} \left[\cos \left(rac{\pi + 2k\pi}{3}
ight) + i \sin \left(rac{\pi + 2k\pi}{3}
ight)
ight]$$

for k = 0, 1, 2. We get

$$egin{aligned} &2(\cos(\pi/3)+i\sin(\pi/3))=2(1/2+i\sqrt{3}/2)=1+\sqrt{3}i\ &2(\cos(3\pi/3)+i\sin(3\pi/3))=2(-1+0i)=-2\ &2(\cos(5\pi/3)+i\sin(5\pi/3))=2(1/2-i\sqrt{3}/2)=1-\sqrt{3}i \end{aligned}$$

Euler's formula

Using some Calculus, one can prove:

Theorem (Euler's formula): For any real number x,

 $e^{ix} = \cos x + i \sin x$

Thus e^{ix} is a complex number on the unit circle. This is most often used as a shorthand:

 $z=r(\cos heta+i\sin heta)=re^{i heta}$

It also leads to one of the most remarkable formulas in mathematics, which combines 5 of the most important numbers:

$$e^{i\pi} + 1 = 0$$