
Math 1600B Lecture 28, Section 2, 17 Mar 2014

Announcements:

Today we finish 4.3 and discuss Appendix C. Read Section 4.4 for next class. Work
through recommended homework questions.

Tutorials: Quiz 8 covers 4.2, 4.3, and the parts of Appendix D that we covered in
class.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Office hour: Wednesday, 10:30-11:15, MC103B. (Today's hour is cancelled.)

Brief review of last lecture:

The characteristic polynomial of a square matrix  is , which is a
polynomial in . The roots/zeros of this polynomial are the eigenvalues of .

A root  of a polynomial  implies that . Sometimes,  is also a

root of . Then . The largest  such that  is a factor
of  is called the multiplicity of the root  in .

In the case of an eigenvalue, we call its multiplicity in the characteristic
polynomial the algebraic multiplicity of this eigenvalue.

For example, if , then  is an eigenvalue with
algebraic multiplicity 2, and  is an eigenvalue with algebraic multiplicity 1.

We also define the geometric multiplicity of an eigenvalue  to be the
dimension of the corresponding eigenspace.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main
diagonal (repeated according to their algebraic multiplicity).

Theorem 4.17: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .

A det(A − λI)
λ A

a f f(x) = (x − a)g(x) a

g(x) f(x) = (x − a h(x))2
k (x − a)k

f a f

det(A − λI) = −(λ − 1 (λ − 2))2
λ = 1

λ = 2

λ

A n × n

A

A =x⃗ b ⃗ ∈b ⃗ Rn

A =x⃗ 0⃗ 
A In
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f. 
g. 
h. The columns of  are linearly independent.
i. The columns of  span .
j. The columns of  are a basis for .
k. The rows of  are linearly independent.
l. The rows of  span .
m. The rows of  are a basis for .
n.
o.  is not an eigenvalue of 

New Material: 4.3: Eigenvalues of powers and inverses

Suppose  is an eigenvector of  with eigenvalue . What can we say about  or

? If  is invertible, how about the eigenvalues/vectors of ? On board.

We've shown:

Theorem 4.18: If  is an eigenvector of  with eigenvalue , then  is an

eigenvector of  with eigenvalue . This holds for each integer , and also
for  if  is invertible.

In contrast to some other recent results, this one is very useful computationally:

Example 4.21: Compute .

Solution: By finding the eigenspaces of the matrix, we can show that

Write , ,  and . Since  we

have

rank(A) = n

nullity(A) = 0
A

A Rn

A Rn

A

A Rn

A Rn

det A ≠ 0
0 A

x⃗ A λ A2

A3 A A−1

x⃗ A λ x⃗ 
Ak λk k ≥ 0

k < 0 A

[ ][ ]0
2

1
1

10
5
1

[ ][ ] = −[ ] and [ ][ ] = 2[ ]0
2

1
1

1
−1

1
−1

0
2

1
1

1
2

1
2

A = [ ]0
2

1
1

= [ ]x⃗ 5
1

= [ ]v ⃗ 1
1

−1
= [ ]v ⃗ 2

1
2

= 3 + 2x⃗ v ⃗ 1 v ⃗ 2

A10 x⃗ = (3 + 2 ) = 3 + 2A10 v ⃗ 1 v ⃗ 2 A10v ⃗ 1 A10v ⃗ 2

= 3(−1 + 2( ) = [ ])10
v ⃗ 1 210 v ⃗ 2

3 + 211

−3 + 212
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Much faster than repeated matrix multiplication, especially if  is replaced with
.

This raises an interesting question. In the example, the eigenvectors were a basis

for , so we could use this method to compute  for any . However, last class
we saw a  matrix with two one-dimensional eigenspaces, so the eigenvectors
didn't span . We will study this further in Section 4.4, but right now we can
answer a related question about linear independence.

Theorem: If  are eigenvectors of  corresponding to distinct
eigenvalues , then  are linearly independent.

Proof in case : If  and  are linearly dependent, then  for some
. Therefore

so

Since , this forces , a contradiction.

The general case is very similar; see text.

Appendix C: Complex numbers

Sometimes a polynomial has complex numbers as its roots, so we need to learn a
bit about them.

A complex number is a number of the form , where  and  are real
numbers and  is a symbol such that .

If , we call  the real part of , written , and  the imaginary part
of , written .

Complex numbers  and  are equal if  and .

On board: sketch complex plane and various points.

Addition: , like vector addition.

Multiplication: . (Explain.)

10
100

R2 Akx⃗ x⃗ 
3 × 3

R3

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ m A

, , … ,λ1 λ2 λm , , … ,v ⃗ 1 v ⃗ 2 v ⃗ m

m = 2 v ⃗ 1 v ⃗ 2 = cv ⃗ 1 v ⃗ 2
c

A = A c = cAv ⃗ 1 v ⃗ 2 v ⃗ 2

= c =λ1v ⃗ 1 λ2v ⃗ 2 λ2v ⃗ 1

≠v ⃗ 1 0⃗ =λ1 λ2 □

a + bi a b

i = −1i2

z = a + bi a z Re z b

z Im z

a + bi c + di a = c b = d

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i
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Examples:

The conjugate of  is . Reflection in real axis. We'll use this for
division of complex numbers in a moment.

Theorem (Properties of conjugates): Let  and  be complex numbers. Then:
1. 

2. 
3.  (typo in text) (good exercise)

4. If , then  (see below for division)
5.  is real if and only if 

The absolute value or modulus  of  is

Note that

This means that for 

This can be used to compute quotients of complex numbers:

Example:

Theorem (Properties of absolute value): Let  and  be complex numbers.

(1 + 2i) + (3 + 4i) = 4 + 6i

(1 + 2i)(3 + 4i) = 1(3 + 4i) + 2i(3 + 4i) = 3 + 4i + 6i + 8i2

= (3 − 8) + 10i = −5 + 10i

5(3 + 4i) = 15 + 20i

(−1)(c + di) = −c − di

z = a + bi = a − biz̄

w z

= zz̄̄

= +w + z¯ ¯¯̄ ¯̄ ¯̄ w̄ z̄

=wz¯ ¯¯̄ w̄z̄

z ≠ 0 = /w/z¯ ¯¯̄¯̄ w̄ z̄

z = zz̄

|z| z = a + bi

|z| = |a + bi| = , the distance from the origin.+a2 b2
− −−−−−√

z = (a + bi)(a − bi) = − abi + abi − = + = |zz̄ a2 b2i2 a2 b2 |2

z ≠ 0

= 1 so =
zz̄

|z|2
z−1 z̄

|z|2

= = .
w

z

w

z

z̄

z̄

wz̄

|z|2

= = = = + i
−1 + 2i

3 + 4i

−1 + 2i

3 + 4i

3 − 4i

3 − 4i

5 + 10i

+32 42

5 + 10i

25
1
5

2
5

w z
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Then:
1.  if and only if .
2. 
3.   (good exercise!)
4. If , then . In particular, .
5. .

Polar Form

A complex number  can also be expressed in polar coordinates ,
where  and  is such that

Then

To compute , note that

But this doesn't pin down , since . You must choose  based on
what quadrant  is in. There is a unique correct  with , and this is
called the principal argument of  and is written  (or ).

Examples: If , then . By inspection,
. We also know that , which gives , and

 gives the right quadrant.

We write  and .

If , then  and by inspection . We still have
, which gives , but now we must take  odd to

land in the right quadrant. Taking  gives the principal argument:

Multiplication and division in polar form

Let

|z| = 0 z = 0
| | = |z|z̄

|wz| = |w||z|
z ≠ 0 |w/z| = |w|/|z| |1/z| = 1/|z|

|w + z| ≤ |w| + |z|

z = a + bi (r, θ)
r = |z| ≥ 0 θ

a = r cos θ and b = r sin θ (sketch)

z = r cos θ + (r sin θ)i = r(cos θ + i sin θ)

θ

tan θ = sin θ/ cos θ = b/a.

θ tan(θ + π) = tan θ θ

z θ −π < θ ≤ π

z Arg z arg z

z = 1 + i r = |z| = =+12 12− −−−−−√ 2√
θ = π/4 = 45∘ tan θ = 1/1 = 1 θ = π/4 + kπ

k = 0

Arg z = π/4 z = (cos π/4 + i sin π/4)2√

w = −1 − i r = 2√ θ = −3π/4 = −135∘

tan θ = −1/ − 1 = 1 θ = π/4 + kπ k

k = −1

Arg w = −3π/4 and w = (cos(−3π/4) + i sin(−3π/4)).2√

= (cos + i sin ) and = (cos + i sin ).z1 r1 θ1 θ1 z2 r2 θ2 θ2
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Then

So

(up to multiples of ). Sketch on board. See also Example C.4.

In particular, if , then . It follows
that the two square roots of  are

The remaining material is for your interest only

Repeating this argument gives:

Theorem (De Moivre's Theorem): If  and  is a positive
integer, then

When , this also holds for  negative. In particular,

Example C.5: Find .

Solution: We saw that . So

th roots

De Moivre's Theorem also lets us compute th roots:

z1z2 = (cos + i sin )(cos + i sin )r1r2 θ1 θ1 θ2 θ2

= [(cos cos − sin sin ) + i(sin cos + cos sin )]r1r2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

= [cos( + ) + i sin( + )]r1r2 θ1 θ2 θ1 θ2

| | = | || | and Arg( ) = Arg + Argz1z2 z1 z2 z1z2 z1 z2

2π

z = r(cos θ + i sin θ) = (cos(2θ) + i sin(2θ))z2 r2

z

± (cos(θ/2) + i(sin θ/2))r√

z = r(cos θ + i sin θ) n

= (cos(nθ) + i sin(nθ))zn rn

r ≠ 0 n

= (cos θ − i sin θ).
1
z

1
r

(1 + i)6

1 + i = (cos(π/4) + i sin(π/4))2√

(1 + i)6 = ( (cos(6π/4) + i sin(6π/4))2√ )6

= 8(cos(3π/2) + i sin(3π/2))

= 8(0 + i(−1)) = −8i

n

n
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Theorem: Let  and let  be a positive integer. Then  has
exactly  distinct th roots, given by

for .

These are equally spaced points on the circle of radius .

Example: The cube roots of : Since , we have

for . We get

Euler's formula

Using some Calculus, one can prove:

Theorem (Euler's formula): For any real number ,

Thus  is a complex number on the unit circle. This is most often used as a
shorthand:

It also leads to one of the most remarkable formulas in mathematics, which
combines 5 of the most important numbers:

z = r(cos θ + i sin θ) n z

n n

[cos( ) + i sin( )]r1/n θ + 2kπ

n

θ + 2kπ

n

k = 0, 1, … , n − 1

r1/n

−8 −8 = 8(cos(π) + i sin(π))

(−8 = [cos( ) + i sin( )])1/3 81/3 π + 2kπ

3
π + 2kπ

3

k = 0, 1, 2

2(cos(π/3) + i sin(π/3)) = 2(1/2 + i /2) = 1 + i3√ 3√

2(cos(3π/3) + i sin(3π/3)) = 2(−1 + 0i) = −2

2(cos(5π/3) + i sin(5π/3)) = 2(1/2 − i /2) = 1 − i3√ 3√

x

= cos x + i sin xeix

eix

z = r(cos θ + i sin θ) = reiθ

+ 1 = 0eiπ
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