Math 1600B Lecture 28, Section 2, 17 Mar 2014

Announcements:

Today we finish 4.3 and discuss Appendix C. Read Section 4.4 for next class. Work
through recommended homework questions.

Tutorials: Quiz 8 covers 4.2, 4.3, and the parts of Appendix D that we covered in
class.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Office hour: Wednesday, 10:30-11:15, MC103B. (Today's hour is cancelled.)

Brief review of last lecture:

The characteristic polynomial of a square matrix A is det(A — AI), which is a
polynomial in . The roots/zeros of this polynomial are the eigenvalues of A.

A root a of a polynomial f implies that f(z) = (x — a)g(x). Sometimes, a is also a
root of g(z). Then f(z) = (z — a)’h(z). The largest k such that (z — a)" is a factor
of fis called the multiplicity of the root a in f.

In the case of an eigenvalue, we call its multiplicity in the characteristic
polynomial the algebraic multiplicity of this eigenvalue.

For example, if det(4 — AI) = —(A — 1)>(A — 2), then A = 1 is an eigenvalue with
algebraic multiplicity 2, and A = 2 is an eigenvalue with algebraic multiplicity 1.

We also define the geometric multiplicity of an eigenvalue A to be the
dimension of the corresponding eigenspace.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main
diagonal (repeated according to their algebraic multiplicity).

Theorem 4.17: Let A be an n X n matrix. The following are equivalent:
a. A is invertible.

b. AZ = b has a unique solution for every b € R™.

c. AZ = 0 has only the trivial (zero) solution.

d. The reduced row echelon form of A is I,,.
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f. rank(A4) =n

g. nullity(4) =0

h. The columns of A are linearly independent.
i. The columns of A span R".

j. The columns of A are a basis for R".

k. The rows of A are linearly independent.

|. The rows of A span R".

m. The rows of A are a basis for R".

n.det A #£0

0. 0 is not an eigenvalue of A

New Material: 4.3: Eigenvalues of powers and inverses

Suppose Z is an eigenvector of A with eigenvalue A\. What can we say about A? or
A37If A is invertible, how about the eigenvalues/vectors of A~1? On board.

We've shown:

Theorem 4.18: If Z is an eigenvector of A with eigenvalue ), then Z is an

eigenvector of A* with eigenvalue A*. This holds for each integer k > 0, and also
for k < 0 if A is invertible.

In contrast to some other recent results, this one is very useful computationally:

10
Example 4.21: Compute [g ” [?]

Solution: By finding the eigenspaces of the matrix, we can show that

EHIE R RN BHIHECH

o 10 1) o {5 - | 1 O I A
erteA_[2 1],m—[1],v1—[_1] andvg—[2].S|ncex—3v1+2v2we

have
Az = A'(35;, 4 20,) = 34"%%;, + 24"%%,

3_|_211

o 10 10\ __
=3(-1)"5 + 220k = | S,
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Much faster than repeated matrix multiplication, especially if 10 is replaced with
100.

This raises an interesting question. In the example, the eigenvectors were a basis
for R?, so we could use this method to compute A*Z for any Z. However, last class
we saw a 3 X 3 matrix with two one-dimensional eigenspaces, so the eigenvectors
didn't span R3. We will study this further in Section 4.4, but right now we can
answer a related question about linear independence.

Theorem: If ¥, 79, ..., v, are eigenvectors of A corresponding to distinct
eigenvalues A1, Ao, ..., Ay, then 91,09, ..., 9, are linearly independent.

Proof in case m = 2: If ¥; and vy are linearly dependent, then v; = cvs for some
c. Therefore

Av; = Acvy = cAv,
o)
AU = el = Aoty
Since v # 0, this forces A1 = A9, a contradiction. [

The general case is very similar; see text.

Appendix C: Complex numbers

Sometimes a polynomial has complex numbers as its roots, so we need to learn a
bit about them.

A complex number is a number of the form a + bi, where a and b are real
numbers and 7 is a symbol such that P2 = —1.

If z=a + bi, we call a the real part of z, written Re z, and b the imaginary part
of z, written Im z.

Complex numbers a + bi and ¢ + di are equal if a = cand b = d.
On board: sketch complex plane and various points.
Addition: (a + bi) + (¢ + di) = (a + ¢) + (b + d)i, like vector addition.

Multiplication: (a + bi)(c + di) = (ac — bd) + (ad + bc)i. (Explain.)
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Examples: (1 + 2:) + (3 +4i) =4+ 6¢
(1 + 24)(3 + 44) = 1(3 + 44) + 24(3 + 4i) = 3 + 4i + 6¢ + 8i°
= (3—-8)+10i = —5+ 10i
5(3 + 43) = 15 + 204
(=) (c+di) = —c—di

The conjugate of z = a + bt is Z = a — bi. Reflection in real axis. We'll use this for
division of complex humbers in a moment.

Theorem (Properties of conjugates): Let w and z be complex numbers. Then:
l.z==z2

W+ Z=wH+Z

wz = wZ (typo in text) (good exercise)

N

If z#£ 0, then w/z = w/Z (see below for division)
zisrealifandonlyif zZ =z

o)

The absolute value or modulus |z| of z = a + bi is

2| = |a + bi| = Va® + b*, the distance from the origin.
Note that
2z = (a + bi)(a — bi) = a® — abi + abi — b%i% = a® + b* = |2°

This means that for z # 0

2z 1 z

2 IRER

This can be used to compute quotients of complex numbers:

wo owZzZ wZ
z  zzZ |
Example:
-1+ 2¢ —1+2¢ 3—4: 5+ 10z 5+ 10z 1+2,
= — — e —1
3+ 41 3+41 3— 4 32 4+ 42 25 5 b

Theorem (Properties of absolute value): Let w and 2z be complex numbers.
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Then:

1. |z| =0 if and only if z = 0.

2.|2| = |2

3. |lwz| = |wl||z| (good exercise!)

4.1f z # 0, then |w/z| = |w|/|z|. In particular, |1/z] = 1/|z|.
5. |w+ 2| < Jw| + [2].

Polar Form

A complex number z = a + bi can also be expressed in polar coordinates (r,0),
where 7 = |z| > 0 and 6 is such that

a =rcosf and b=rsinf (sketch)
Then

z=rcosfO+ (rsinf)i = r(cos 6 + isin 6)
To compute 6, note that

tanf = sinf/ cos @ = b/a.

But this doesn't pin down 6, since tan(f + m) = tan 6. You must choose € based on
what quadrant z is in. There is a unique correct § with —m < 8 < 7, and this is
called the principal argument of z and is written Arg z (or arg z).

Examples: If z = 1 + 4, then r = |2| = /1% + 1 = /2. By inspection,
6 = /4 = 45°. We also know that tanf = 1/1 = 1, which gives § = n/4 + kx, and
k = 0 gives the right quadrant.

We write Argz = 7/4 and z = v/2(cos /4 + isinm/4).

If w= —1— i, then » = 4/2 and by inspection § = —37/4 = —135°. We still have
tanf = —1/ — 1 =1, which gives § = 7/4 + km, but now we must take k odd to
land in the right quadrant. Taking £k = —1 gives the principal argument:

Argw = —37/4 and w = 1/2(cos(—37/4) + isin(—3mw/4)).
Multiplication and division in polar form

Let

z1 =7r1(cosfy +isinf;) and zy = ro(cosfy + isinby).
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Then

2129 = r17r2(cos 1 + isin 61 )(cos Oz + isin bs)
= r172[(cos 01 cos 0y — sin 6, sin O ) + i(sin O cos B2 + cos 61 sin 6)]
= r179[cos(fy + 02) + isin(0; + 63)]

So
|z129| = |21]|22| and Arg(z122) = Argz; + Arg 2,
(up to multiples of 27). Sketch on board. See also Example C.4.

In particular, if z = r(cos @ + isin ), then 22 = r%(cos(26) + isin(26)). It follows
that the two square roots of z are

+,/7(cos(8/2) + i(sin/2))
The remaining material is for your interest only
Repeating this argument gives:

Theorem (De Moivre's Theorem): If z = r(cos 6 + isinf) and n is a positive
integer, then

2" = r"(cos(nB) + isin(nd))
When r # 0, this also holds for n negative. In particular,

1 1
— = — (cosf — isinb).
z T

Example C.5: Find (1 +i)°.
Solution: We saw that 1 + i = v/2(cos(m/4) + isin(m/4)). So
(1+4)° = (v/2)%(cos(6m/4) + isin(67/4))
(cos(3m/2) + isin(37/2))
(0+i(~1)) = —8i

8
8

nth roots

De Moivre's Theorem also lets us compute nth roots:



Theorem: Let z = r(cos 8 + isin §) and let n be a positive integer. Then z has
exactly n distinct nth roots, given by

1/n[ (0—|—2k7r> . <0+2k7r>]
r cos| ——— | +1smm| ——
n n

fork=0,1,...,n— 1.

These are equally spaced points on the circle of radius rl/n,

Example: The cube roots of —8: Since —8 = 8(cos(m) + isin(7)), we have

(—8)1/3 — gl/3 [cos(#) + isin(%ﬂm)]

fork =0,1,2. We get
2(cos(m/3) +isin(7/3)) = 2(1/2 +i4/3/2) = 1+ +/3i
2(cos(37/3) +isin(37w/3)) =2(—14 0i) = —2
2(cos(57/3) + isin(bn/3)) = 2(1/2 —i4/3/2) =1 — /3i
Euler's formula

Using some Calculus, one can prove:
Theorem (Euler's formula): For any real number z,
iw . . .
€7 =CoST +1SInx

Thus €®® is a complex number on the unit circle. This is most often used as a
shorthand:

z = r(cos § + isin ) = re’

It also leads to one of the most remarkable formulas in mathematics, which
combines 5 of the most important numbers:

e"+1=0
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