Math 1600B Lecture 28, Section 2, 17 Mar 2014

Announcements:

Today we finish 4.3 and discuss Appendix C. **Read** Section 4.4 for next class. Work through recommended homework questions.

Tutorials: Quiz 8 covers 4.2, 4.3, and the parts of Appendix D that we covered in class.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Office hour: Wednesday, 10:30-11:15, MC103B. (Today's hour is cancelled.)

Brief review of last lecture:

The **characteristic polynomial** of a square matrix A is $\det(A - \lambda I)$, which is a polynomial in λ . The roots/zeros of this polynomial are the eigenvalues of A .

A root a of a polynomial f implies that $f(x) = (x-a)g(x).$ Sometimes, a is also a $f(x) = (x - a)^2 h(x)$. Then $f(x) = (x - a)^2 h(x)$. The largest k such that $(x - a)^k$ is a factor of f is called the **multiplicity** of the root a in f .

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

For example, if $\det(A - \lambda I) = -(\lambda - 1)^2 (\lambda - 2)$, then $\lambda = 1$ is an eigenvalue with algebraic multiplicity 2, and $\lambda = 2$ is an eigenvalue with algebraic multiplicity $1.$

We also define the **geometric multiplicity** of an eigenvalue λ to be the dimension of the corresponding eigenspace.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main diagonal (repeated according to their algebraic multiplicity).

Theorem 4.17: Let A be an $n \times n$ matrix. The following are equivalent:

- a. A is invertible.
- b. $A\vec{x}=\vec{b}$ has a unique solution for every $\vec{b}\in\mathbb{R}^n$.
- c. $A\vec{x}=\vec{0}$ has only the trivial (zero) solution.
- d. The reduced row echelon form of A is $I_n.$

f. $\mathrm{rank}(A)=n$ $\mathsf g. \ \text{nullity}(A) = 0$ h. The columns of A are linearly independent. i. The columns of A span $\mathbb{R}^n.$ j. The columns of A are a basis for $\mathbb{R}^n.$ k. The rows of A are linearly independent. l. The rows of A span \mathbb{R}^n . m. The rows of A are a basis for $\mathbb{R}^n.$ **n**. $\det A \neq 0$ o. is not an eigenvalue of 0 *A*

New Material: 4.3: Eigenvalues of powers and inverses

Suppose \vec{x} is an eigenvector of A with eigenvalue λ . What can we say about A^2 or A^3 ? If A is invertible, how about the eigenvalues/vectors of A^{-1} ? On board.

We've shown:

Theorem 4.18: If \vec{x} is an eigenvector of A with eigenvalue λ , then \vec{x} is an eigenvector of A^k with eigenvalue $\lambda^k.$ This holds for each integer $k\geq 0$, and also for $k < 0$ if A is invertible.

In contrast to some other recent results, this one is very useful computationally:

Example 4.21: Compute $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$. 1 1 $^{10} \, \lceil \, 5$ 1

Solution: By finding the eigenspaces of the matrix, we can show that

$$
\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -\begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$

Write $A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$, $\vec{x} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$, $\vec{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Since $\vec{x} = 3\vec{v}_1 + 2\vec{v}_2$ we have

have

$$
A^{10}\vec{x} = A^{10}(3\vec{v}_1 + 2\vec{v}_2) = 3A^{10}\vec{v}_1 + 2A^{10}\vec{v}_2 \\ = 3(-1)^{10}\vec{v}_1 + 2(2^{10})\vec{v}_2 = \begin{bmatrix} 3+2^{11} \\ -3+2^{12} \end{bmatrix}
$$

Much faster than repeated matrix multiplication, especially if 10 is replaced with . 100

This raises an interesting question. In the example, the eigenvectors were a basis for \mathbb{R}^2 , so we could use this method to compute $A^k\vec{x}$ for any $\vec{x}.$ However, last class we saw a 3×3 matrix with two one-dimensional eigenspaces, so the eigenvectors didn't span $\mathbb{R}^3.$ We will study this further in Section 4.4, but right now we can answer a related question about linear independence.

 ${\sf Theorem}\colon$ If $\vec v_1,\vec v_2,\ldots,\vec v_m$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$, then $\vec v_1, \vec v_2, \ldots, \vec v_m$ are linearly independent.

Proof in case $m=2$: If \vec{v}_1 and \vec{v}_2 are linearly dependent, then $\vec{v}_1=c\vec{v}_2$ for some $\emph{c}.$ Therefore

$$
A\vec{v}_1=A\,c\vec{v}_2=cA\vec{v}_2
$$

so

 $\lambda_1 \vec{v}_1 = c \lambda_2 \vec{v}_2 = \lambda_2 \vec{v}_1$

 \sin ce $\vec{v}_1 \neq \vec{0}$, this forces $\lambda_1 = \lambda_2$, a contradiction. $\quad \Box$

The general case is very similar; see text.

Appendix C: Complex numbers

Sometimes a polynomial has complex numbers as its roots, so we need to learn a bit about them.

A $\mathop{\mathsf{complex}}$ $\mathop{\mathsf{number}}$ is a number of the form $a+bi$, where a and b are real numbers and i is a symbol such that $i^2=-1$.

If $z = a + bi$, we call a the **real part** of z , written $\operatorname{Re} z$, and b the **imaginary part** of z , written $\text{Im } z$.

Complex numbers $a + bi$ and $c + di$ are equal if $a = c$ and $b = d$.

On board: sketch complex plane and various points.

 ${\bf Addition:}\ (a+bi)+(c+di)=(a+c)+(b+d)i.$ like vector addition.

 ${\sf Multiplication:}\ (a+bi)(c+di)=(ac-bd)+(ad+bc)i.$ (Explain.)

 $\textsf{\textbf{Examples:}} \; (1 + 2i) + (3 + 4i) = 4 + 6i$

$$
\begin{aligned} (1+2i)(3+4i) &= 1(3+4i) + 2i(3+4i) = 3+4i+6i+8i^2 \\ &= (3-8)+10i = -5+10i \\ 5(3+4i) &= 15+20i \\ (-1)(c+di) &= -c-di \end{aligned}
$$

The $\mathop{\mathrm{conjugate}}$ of $z = a + bi$ is $\bar{z} = a - bi.$ Reflection in real axis. We'll use this for division of complex numbers in a moment.

Theorem (Properties of conjugates): Let w and z be complex numbers. Then:

- 1. $\bar{\bar{z}}=z$
- 2. $\overline{w+z}=\bar{w}+\bar{z}$
- 3. $\overline{wz} = \bar{w}\bar{z}$ (typo in text) (good exercise)
- 4. If $z \neq 0$, then $\overline{w/z} = \bar{w}/\bar{z}$ (see below for division)
- 5. z is **real** if and only if $\bar{z} = z$

The <code>absolute</code> value or modulus $|z|$ of $z = a + bi$ is

 $|z| = |a + bi| = \sqrt{a^2 + b^2}, \quad \text{the distance from the origin}.$

Note that

$$
z\bar{z} = (a + bi)(a - bi) = a^2 - abi + abi - b^2i^2 = a^2 + b^2 = |z|^2
$$

This means that for $z\neq 0$

$$
\frac{z\bar{z}}{\left|z\right|^2} = 1 \quad \text{so} \quad z^{-1} = \frac{\bar{z}}{\left|z\right|^2}
$$

This can be used to compute quotients of complex numbers:

$$
\frac{w}{z}=\frac{w}{z}\,\frac{\bar z}{\bar z}=\frac{w\bar z}{\left|z\right|^2}\,.
$$

Example:

$$
\frac{-1+2i}{3+4i}=\frac{-1+2i}{3+4i}\ \frac{3-4i}{3-4i}=\frac{5+10i}{3^2+4^2}=\frac{5+10i}{25}=\frac{1}{5}+\frac{2}{5}\ i
$$

Theorem (Properties of absolute value): Let w and z be complex numbers.

Then:

 $1. \; |z|=0$ if and only if $z=0.$ $|z| = |z|$ 3. $|wz| = |w||z| \,$ (good exercise!) 4. If $z\neq 0$, then $|w/z|=|w|/|z|.$ In particular, $|1/z|=1/|z|.$ $5. |w+z| \leq |w| + |z|.$

Polar Form

A complex number $z = a + bi$ can also be expressed in **polar coordinates** (r, θ) , where $r=|z|\geq 0$ and θ is such that

 $a = r \cos \theta$ and $b = r \sin \theta$ (sketch)

Then

 $z = r \cos \theta + (r \sin \theta)i = r(\cos \theta + i \sin \theta)$

To compute θ , note that

 $\tan \theta = \sin \theta / \cos \theta = b/a.$

 ${\sf But}$ this doesn't pin down θ , since $\tan(\theta+\pi)=\tan\theta.$ You must choose θ based on what quadrant z is in. There is a unique correct θ with $-\pi < \theta \leq \pi$, and this is called the **principal argument** of z and is written $\text{Arg } z$ (or $\text{arg } z$).

Examples: If $z = 1 + i$, then $r = |z| = \sqrt{1^2 + 1^2} = \sqrt{2}$. By inspection, $\theta = \pi/4 = 45^\circ$. We also know that $\tan \theta = 1/1 = 1$, which gives $\theta = \pi/4 + k\pi$, and $k=0$ gives the right quadrant.

We write $\text{Arg}\, z = \pi/4$ and $z = \sqrt{2}(\cos \pi/4 + i \sin \pi/4)$.

If $w=-1-i$, then $r=\sqrt{2}$ and by inspection $\theta=-3\pi/4=-135^\circ$. We *still* have $\tan \theta = -1/ -1 = 1$, which gives $\theta = \pi/4 + k \pi$, but now we must take k odd to land in the right quadrant. Taking $k=-1$ gives the principal argument:

$$
\text{Arg } w = -3\pi/4 \quad \text{and} \quad w = \sqrt{2}(\cos(-3\pi/4) + i\sin(-3\pi/4)).
$$

Multiplication and division in polar form

Let

$$
z_1=r_1(\cos\theta_1+i\sin\theta_1)\quad\text{and}\quad z_2=r_2(\cos\theta_2+i\sin\theta_2).
$$

Then

$$
\begin{aligned} z_1 z_2 &= r_1 r_2 (\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2) \\ &= r_1 r_2 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)] \\ &= r_1 r_2 [\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2)] \end{aligned}
$$

So

$$
|z_1z_2|=|z_1||z_2| \quad \text{and} \quad \operatorname{Arg}(z_1z_2)=\operatorname{Arg} z_1+\operatorname{Arg} z_2
$$

(up to multiples of 2π). Sketch on board. See also Example C.4.

In particular, if $z = r(\cos \theta + i \sin \theta)$, then $z^2 = r^2(\cos(2\theta) + i \sin(2\theta))$. It follows that the two **square roots** of z are

$$
\pm \sqrt{r}(\cos(\theta/2)+i(\sin{\theta/2}))
$$

The remaining material is for your interest only

Repeating this argument gives:

 $\bf{Theorem (De Moivre's Theorem):}$ If $z=r(\cos\theta+i\sin\theta)$ and n is a positive integer, then

$$
z^n=r^n(\cos(n\theta)+i\sin(n\theta))
$$

When $r\neq 0$, this also holds for n negative. In particular,

$$
\frac{1}{z}=\frac{1}{r}\,(\cos\theta-i\sin\theta).
$$

Example C.5: Find $(1+i)^6$.

 ${\sf Solution}\colon \mathsf{We} \text{ saw that } 1+i = \sqrt{2}(\cos(\pi/4)+i\sin(\pi/4))$. So

$$
\begin{aligned} (1+i)^6&=(\sqrt{2})^6(\cos(6\pi/4)+i\sin(6\pi/4))\\&=8(\cos(3\pi/2)+i\sin(3\pi/2))\\&=8(0+i(-1))=-8i \end{aligned}
$$

n th roots

De Moivre's Theorem also lets us compute nth roots:

 $\bf{Theorem:}$ Let $z=r(\cos\theta+i\sin\theta)$ and let n be a positive integer. Then z has exactly n distinct n th roots, given by

$$
r^{1/n}\biggl[\cos\biggl(\frac{\theta+2k\pi}{n}\biggr)+i\sin\biggl(\frac{\theta+2k\pi}{n}\biggr)\biggr]
$$

for $k=0,1,\ldots,n-1.$

These are equally spaced points on the circle of radius $r^{1/n}.$

Example: The cube roots of -8 : Since $-8 = 8(\cos(\pi) + i\sin(\pi))$, we have

$$
(-8)^{1/3} = 8^{1/3} \bigg[\cos\bigg(\frac{\pi + 2k\pi}{3} \bigg) + i \sin\bigg(\frac{\pi + 2k\pi}{3} \bigg) \bigg]
$$

for $k=0,1,2.$ We get

$$
2(\cos(\pi/3) + i \sin(\pi/3)) = 2(1/2 + i\sqrt{3}/2) = 1 + \sqrt{3}i
$$

$$
2(\cos(3\pi/3) + i \sin(3\pi/3)) = 2(-1 + 0i) = -2
$$

$$
2(\cos(5\pi/3) + i \sin(5\pi/3)) = 2(1/2 - i\sqrt{3}/2) = 1 - \sqrt{3}i
$$

Euler's formula

Using some Calculus, one can prove:

Theorem (Euler's formula): For any real number x ,

 $e^{ix} = \cos x + i \sin x$

Thus e^{ix} is a complex number on the unit circle. This is most often used as a shorthand:

 $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$

It also leads to one of the most remarkable formulas in mathematics, which combines 5 of the most important numbers:

$$
e^{i\pi}+1=0
$$