
Math 1600B Lecture 29, Section 2, 19 March
2014

Announcements:

Today we finish 4.3 and start 4.4. Continue reading Section 4.4 for
Wednesday. Work through recommended homework questions.

Tutorials: Quiz 8 covers 4.2, 4.3, and the parts of Appendix D that we
covered in class.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

The final exam will take place on Tuesday, April 22, 2-5pm. All students
write in AH201 (Alumni Hall). The final exam will cover all the material from
the course, but will emphasize the material after the midterm. See the
course home page for final exam conflict policy. You should immediately
notify the registrar or your Dean (and your instructor) of any conflicts!

Partial review of Section 4.3

The eigenvalues of a square matrix  can be computed as the roots (also
called zeros) of the characteristic polynomial

Theorem D.2 (The Factor Theorem): Let  be a polynomial and let  be
a constant. Then  is a root of  (i.e. ) if and only if  is a
factor of  (i.e.  for some polynomial ).

The largest  such that  is a factor of  is called the multiplicity of
the root  in .

Example: Let . Since ,  is a

root of . And since ,  has multiplicity .

In the case of an eigenvalue, we call its multiplicity in the characteristic
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polynomial the algebraic multiplicity of this eigenvalue.

We also define the geometric multiplicity of an eigenvalue  to be the
dimension of the corresponding eigenspace .

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its
main diagonal (repeated according to their algebraic multiplicity).

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of
degree  has at most  distinct roots. In fact, the sum of the multiplicities is
at most .

Therefore:

Theorem: An  matrix  has at most  distinct eigenvalues. In fact,
the sum of the algebraic multiplicities is at most .

Partial review of Appendix C

A complex number is a number of the form , where  and  are real

numbers and  is a symbol such that .

Addition: , like vector addition.

Multiplication: . (Explain.)

The conjugate of  is . Reflection in real axis. We
learned the properties of conjugation.

The absolute value or modulus  of  is

Note that

This means that for 
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This can be used to compute quotients of complex numbers:

Example:

We learned the properties of absolute value. One of them was
.

A complex number  can also be expressed in polar coordinates
, where  and  is such that

Then
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In particular, if , then . It
follows that the two square roots of  are

New material: complex eigenvalues and eigenvectors

This material isn't covered in detail in the text.

Example 4.7: Find the eigenvalues of  (a) over  and (b)

over .

Solution: We must solve

(a) Over , there are no solutions, so  has no real eigenvalues. This is why
the Theorem above says "at most ". (This matrix represents rotation by 90
degrees, and we also saw geometrically that it has no real eigenvectors.)

(b) Over , the solutions are  and . For example, the

eigenvectors for  are the nonzero complex multiples of , since

In fact, , so each of these eigenvalues has
algebraic multiplicity 1. So in this case the sum of the algebraic
multiplicities is exactly 2.

The Fundamental Theorem of Algebra can be extended to say:

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of
degree  has at most  distinct complex roots. In fact, the sum of their
multiplicities is exactly .
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Another way to put it is that over the complex numbers, every polynomial
factors into linear factors.

Real matrices

Notice that  and  are complex conjugates of each other.

If the matrix  has only real entries, then the characteristic polynomial has
real coefficients. Say it is

with all of the 's real numbers. If  is an eigenvalue, then so is its complex
conjugate , because

Theorem: The complex eigenvalues of a real matrix come in conjugate
pairs.

Complex matrices

A complex matrix might have real or complex eigenvalues, and the complex
eigenvalues do not have to come in conjugate pairs.

Examples: , .

General case

In general, don't forget that the quadratic formula

gives the roots of , and these can be real (if ) or
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complex (if ). This formula also works if ,  and  are
complex.

Also don't forget to try small integers first.

Example: Find the real and complex eigenvalues of .

Solution:

By trial and error,  is a root. So we factor:

We don't find any obvious roots for the quadratic factor, so we use the
quadratic formula:

So the eigenvalues are ,  and .

Note: Our questions always involve real eigenvalues and real eigenvectors
unless we say otherwise. But there will be problems where we ask for
complex eigenvalues.

More review: Eigenvalues of powers and inverses
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Theorem 4.18: If  is an eigenvector of  with eigenvalue , then  is an

eigenvector of  with eigenvalue . This holds for each integer ,
and also for  if  is invertible.

We saw that this was useful computationally. We also saw:

Theorem 4.20: If  are eigenvectors of  corresponding to
distinct eigenvalues , then  are linearly
independent.

We saw that sometimes the eigenvectors span , and sometimes they
don't.

Section 4.4: Similarity and Diagonalization

We're going to introduce a new concept that will turn out to be closely
related to eigenvalues and eigenvectors.

Definition: Let  and  be  matrices. We say that  is similar to 

if there is an invertible matrix  such that . When this is the
case, we write .

It is equivalent to say that  or .

Example 4.22: Let  and . Then ,

since

We also need to check that the matrix  is invertible, which is

the case since its determinant is .

It is tricky in general to find such a  when it exists. We'll learn a method
that works in a certain situation in this section.
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Theorem 4.21: Let ,  and  be  matrices. Then:
a. .
b. If  then .
c. If  and , then .

Proof: (a) 

(b) Suppose . Then  for some invertible matrix . Then

. Let . Then , so .

(c) Exercise.

Similar matrices have a lot of properties in common.

Theorem 4.22: Let  and  be similar matrices. Then:
a. 
b.  is invertible iff  is invertible.
c.  and  have the same rank.
d.  and  have the same characteristic polynomial.
e.  and  have the same eigenvalues.

Proof: Assume that  for some invertible matrix .

We discussed (a) last time:

(b) follows immediately.

(c) takes a bit of work and will not be covered.

(d) follows from (a): since  it
follows that  and  have the same determinant.

(e) follows from (d).

A B C n × n
A ∼ A

A ∼ B B ∼ A
A ∼ B B ∼ C A ∼ C
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□
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Question: Are  and  similar?

Question: Are  and  similar?

See also Example 4.23(b) in text.

Diagonalization

Definition:  is diagonalizable if it is similar to some diagonal matrix.

Example 4.24:  is diagonalizable. Take . Then

If  is similar to a diagonal matrix , then  must have the eigenvalues of
 on the diagonal. But how to find ?

On board: notice that the columns of  are eigenvectors for !

Theorem 4.23: Let  be an  matrix. Then  is diagonalizable if and
only if  has  linearly independent eigenvectors.

More precisely, there exist an invertible matrix  and a diagonal matrix 

with  if and only if the columns of  are  linearly
independent eigenvectors of  and the diagonal entries of  are the
corresponding eigenvalues in the same order.

This theorem is one of the main reasons we want to be able to find
eigenvectors of a matrix. Moreover, the more eigenvectors the better, so
this motivates allowing complex eigenvectors. We're going to say a lot more
about diagonalization.
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