
Math 1600B Lecture 31, Section 2, 24 March
2014

Announcements:

Course evaluations at start.

Today we finish 4.4 and cover the Markov chains part of Section 4.6. Not
covering Section 4.5, or rest of 4.6 (which contains many interesting
applications!) Read Section 5.1 for next class.

Tutorials: Quiz 9 covers Section 4.4 only.
Office hour: Mon 1:30-2:30 and Wed 10:30-11:15, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Questions to discuss with your neighbour: What does it mean for 
and  to be similar? What properties do similar matrices have in common?
What does it mean for  to be diagonalizable? How do we tell if it is, and
how do we diagonalize ?

Review of Section 4.4:

Definition: Let  and  be  matrices. We say that  is similar to 

( ) if there is an invertible matrix  such that .

Theorem 4.22: Let  and  be similar matrices. Then  and  have the
same determinant, rank, characteristic polynomial and eigenvalues.

Definition:  is diagonalizable if it is similar to some diagonal matrix.

If  is similar to a diagonal matrix , then  must have the eigenvalues of
 on the diagonal. But how to find ?

Theorem 4.23: Let  be an  matrix. If  is an  matrix whose

columns are linearly independent eigenvectors of , then  is a
diagonal matrix  with the corresponding eigenvalues of  on the diagonal.
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On the other hand, if  is any invertible matrix such that  is
diagonal, then the columns of  are linearly independent eigenvectors of .

It follows that  is diagonalizable if and only if it has  linearly independent
eigenvectors.

This theorem is one of the main reasons we want to be able to find
eigenvectors of a matrix. Moreover, the more eigenvectors the better, so
this motivates allowing complex eigenvectors.

Theorem 4.24: If  are distinct eigenvalues of  and, for each ,
 is a basis for the eigenspace , then the union of the 's is a linearly

independent set.

Combining Theorems 4.23 and 4.24 gives the following important
consequence:

Theorem: An  matrix is diagonalizable if and only if the sum of the
geometric multiplicities of the eigenvalues is .

In particular:

Theorem 4.25: If  in an  matrix with  distinct eigenvalues, then 
is diagonalizable.

So it is important to understand the geometric multiplicities better. Here is a
helpful result:

Lemma 4.26: If  is an eigenvalue of an  matrix , then

It follows that the only way for the geometric multiplicities to add to  is if
they are equal to the algebraic multiplicities and the algebraic multiplicities
add to :

Theorem 4.27 (The Diagonalization Theorem): Let  be an 
matrix with distinct eigenvalues . Let their geometric
multiplicities be  and their algebraic multiplicities be

. Then the following are equivalent:
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a.  is diagonalizable.
b. .
c.  for each and .

Note: This is stated incorrectly in the text. The red part must be added
unless you are working over , in which case it is automatic that

. With the way I have stated it, it is correct over  or
over .

Summary of diagonalization: Given an  matrix , we would like to
determine whether  is diagonalizable, and if it is, find the invertible matrix

 and the diagonal matrix  such that . The result may
depend upon whether you are working over  or .

Steps:

1. Compute the characteristic polynomial  of .
2. Find the roots of the characteristic polynomial and their algebraic
multiplicities by factoring.
3. If the algebraic multiplicities don't add up to , then  is not
diagonalizable, and you can stop. (If you are working over , this can't
happen.)
4. For each eigenvalue , compute the dimension of the eigenspace .
This is the geometric multiplicity of , and if it is less than the algebraic
multiplicity, then  is not diagonalizable, and you can stop.
5. Compute a basis for the eigenspace .
6. If for each eigenvalue the geometric multiplicity equals the algebraic
multiplicity, then you take the  eigenvectors you found and put them in
the columns of a matrix . Put the eigenvalues in the same order on the
diagonal of a matrix .
7. Check that .

Note that step 4 only requires you to find the row echelon form of ,
as the number of free variables here is the geometric multiplicity. In step 5,
you solve the system.

New material:
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Powers:

Suppose , where  is diagonal. Then . We can
use this to compute powers of . For example,

and  is easy to compute since  is diagonal: you just raise the diagonal
entries to the fifth power.

More generally, . This is clearly an efficient way to compute
powers! Note that we need to know , not just , to do this. Also note that
even if  is real, it would work to diagonalize  over . The answer would
be real, but the intermediate calculations would be complex.

See Example 4.29 for a sample calculation. We'll illustrate this result with an
example from Markov Chains.

Review of Markov chains:

A Markov chain has a finite set of states  and there is an 
matrix  (called the transition matrix) with the property that the  entry

 is the probability that you transition from state  to state  in one time

step.

Since you must transition to some state, . That is, the

entries in each column sum to 1. Moreover, each entry . Such a  is

called a stochastic matrix.

We can represent the current state of the system with a state vector
. The th entry of  may denote the number of people/objects in

state . Or we may divide by the total number, so the th entry of  gives
the fraction of people/objects in state . In this case,  has non-negative
entries that sum to 1 and is called a probability vector.

If  denotes the state after  time steps, then the state after one more
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time step is given by

It follows that . Therefore:

The  entry  of  is the probability of going from state  to state 

in  steps.

A state  such that  is called a steady state vector. This is the
same as an eigenvector with eigenvalue 1. In Lecture 22, we proved:

Theorem 4.30: Every stochastic matrix has a steady state vector, i.e. it
has  as an eigenvalue.

We proved this using the fact that  and  have the same eigenvalues,

and then noticing that the vector with all 's is an eigenvector of  with
eigenvalue 1.

Example: We studied toothpaste usage, and had transition matrix

We noticed experimentally that a given starting state tends to the state

 and that

We then found this steady state vector algebraically by solving

. [It is equivalent to solve .]

With our new tools, we can go further now.

Section 4.6: Markov chains:
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Let's compute powers of the matrix  above. One can show that  has
characteristic polynomial

and so has eigenvalues  and . The eigenspaces are

So if we write , we have that .

Therefore,

As , , so

It follows that if we start with any state  with , we'll

find that

This explains why every state tends to the steady state! (It also gives a fast
way to compute  for large .)

This is a very general phenomenon, which we'll spend the rest of the lecture
understanding.

Theorem 4.31: Let  be an  stochastic matrix. Then every
eigenvalue  has .
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If in addition the entries of  are all positive, then all eigenvalues besides
 have .

The general proof just involves some inequalities, but the notation is
confusing. Let's see how the argument goes in the special case of

The key idea is to study the eigenvalues of , which are the same as

those of . Suppose  is an eigenvector of  with . Then

 which means that

The second component gives

and so . If we allow  and  to be negative or complex, we need to
use absolute values, and we can conclude that .

The other part of the Theorem is similar.

The next theorem helps us understand the long-term behaviour:

Theorem 4.33: Let  be an  stochastic matrix all of whose entries

are positive. Then as , , a matrix all of whose columns are
equal to the same vector  which is a steady state probability vector for .

Proof: We'll assume  is diagonalizable: . So

. As ,  approaches a matrix  with 's and 's

on the diagonal (by Theorem 4.31), which means that  approaches

.
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Now that we know that  has some limit , we can deduce something

about it. Since , we have

This means that the columns of  must be steady-state vectors for . Since

the columns of  are probability vectors, the same must be true of the
columns of . It's not hard to show that  has a unique steady-state
probability vector , so , as required.

Finally, we can deduce that Markov chains tend to their steady states:

Theorem 4.34: Let  be an  stochastic matrix all of whose entries
are positive, and let  be any initial probability vector. Then as ,

, where  is the steady state probability vector for .

Proof: Suppose that  has components . Then

This result works both ways: if you compute the eigenvector with
eigenvalue 1, that tells you the steady-state vector that other states go to
as . But it also means that if you don't know the steady-state vector,

you can approximate it by starting with any vector  and computing 
for large !

The latter is what Google does to compute the page rank eigenvector.

Note: A transition matrix  is regular if some power  of it has positive
entries. This means that there is a nonzero probably to get from any starting
state to any ending state after some number of steps. The text proves the
above results for regular matrices, which is not hard once you know them
for matrices with positive entries.
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