
Math 1600B Lecture 33, Section 2, 28 Mar 2014

Announcements:

Today we finish 5.1 and start 5.2. Continue reading Section 5.2 for next
class, and start reading 5.3. Work through recommended homework
questions.

Tutorials: Next week: review and questions.
Office hour: Mon 1:30-2:30 and Wed 10:30-11:15, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

T/F: A matrix with orthogonal columns is called an orthogonal matrix.

T/F: An orthogonal matrix must be square.

Question: Why are orthonormal bases great? Are orthogonal bases great
too?

Review of Section 5.1: Orthogonal and Orthonormal sets

Definition: A set of vectors  in  is an orthogonal set if
 for . If it an orthonormal set if in addition  for

each , i.e., each vector is a unit vector.

Theorem 5.1: An orthogonal set of nonzero vectors is always linearly
independent.

Definition: An orthogonal basis for a subspace  of  is a basis of 
that is an orthogonal set. An orthonormal basis is a basis that is an
orthonormal set.

You only need to check that the set spans , since it is automatically
linearly independent.

Note: An orthogonal basis can be converted to an orthonormal basis by
dividing each vector by its length. We'll show in Section 5.3 that every
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subspace has an orthogonal basis.

Recall that if  is any basis of a subspace , then any  in
 can be written uniquely as a linearly combination of the vectors in the

basis. In general, finding the coefficients involves solving a linear system.
For an orthogonal basis, it is much easier:

Theorems 5.2/5.3: If  is an orthogonal basis of a subspace
, and  is in , then

If the basis is orthonormal, then

Orthogonal Matrices

Definition: A square matrix with real entries whose columns form an
orthonormal set is called an orthogonal matrix!

Note: In  and , orthogonal matrices correspond exactly to the
rotations and reflections. This is an important geometric reason to study
them. Another reason is that we will see in Section 5.4 that they are related
to diagonalization of symmetric matrices.

Theorems 5.4 and 5.5:  is orthogonal if and only if , i.e. if and

only if  is invertible and .

Examples:  and .

Theorem 5.7: If  is orthogonal, then its rows form an orthonormal set
too.

Another way to put it is that  is also an orthogonal matrix.
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Theorem 5.6: Let  be an  matrix. Then the following statements
are equivalent:
a.  is orthogonal.
b.  for every  in .
c.  for every  and  in .

New material

Example: Compute the eigenvalues of  and the determinant of  and 
on the board.

Theorem 5.8: Let  be an orthogonal matrix. Then:

a.  is orthogonal.
b. 
c. If  is an eigenvalue of , then .
d. If  and  are orthogonal matrices of the same size, then  is
orthogonal.

Proof:

(a) is Theorem 5.7, since .

(b): Since , we have

Therefore .

(c) If , then

so , since .

(d) Exercise, using properties of transpose.

Question: Find an orthogonal matrix  with determinant .

Section 5.2: Orthogonal Complements and Orthogonal
Projections
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We saw in Section 5.1 that orthogonal and orthonormal bases are
particularly easy to work with. In Section 5.3, we will learn how to find these
kinds of bases. In this section, we learn the tools which will be needed in
Section 5.3. We will also find a new way to understand the subspaces
associated to a matrix.

Orthogonal Complements

If  is a plane through the origin, with normal vector , then the subspaces
 and  have the property that every vector in one is orthogonal to

every vector in the other.

Definition: Let  be a subspace of . A vector  is orthogonal to  if 
is orthogonal to every vector in . The orthogonal complement of  is

the set of all vectors orthogonal to  and is denoted . So

In the example above, if we write  for the line perpendicular to

, then  and .

Theorem 5.9: Let  be a subspace of . Then:

a.  is a subspace of .

b. 

c. 

d. If , then  is in  if and only if  for
all .

Explain (a), (c), (d) on board. (b) will be Corollary 5.12.

Theorem 5.10: Let  be an  matrix. Then

The first two are in  and the last two are in . These are the four
fundamental subspaces of .

Let's see why . A vector is in  exactly when it
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is orthogonal to the rows of . But the rows of  span , so the
vectors in  are exactly those which are orthogonal to , by
5.9(d).

The fact that  follows by replacing  with .

Example: Let  be the subspace spanned by  and

. Find a basis for .

Solution: Let  be the matrix with  and  as rows. Then ,

so . Continue on board.

Orthogonal projection

Recall (from waaaay back in Section 1.2) that the formula for the projection
of a vector  onto a nonzero vector  is:

(Illustrated by this java applet, where red is , blue is  and yellow is the
projection.)

We didn't name it then, but we also noticed that  is orthogonal
to . Let's call this .

So if we write , then  is in , 

is in , and . We can do this more generally:

Definition: Let  be a subspace of  and let
 be an orthogonal basis for . For

 in , the orthogonal projection of  onto
 is the vector

The component of  orthogonal to  is the
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We will show soon that  is in .

Note that multiplying  by a scalar in the earlier

example doesn't change ,  or . We'll see
later that the general definition also doesn't
depend on the choice of orthogonal basis.

Example: Let , where  and .

Compute  and , where . On board.

Notice that  is in .
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