Math 1600B Lecture 35, Section 2, 2 Apr 2014

Announcements:

Today we finish 5.3 and start 5.4. **Read** Section 5.4 for next class. Work through recommended homework questions.

Tutorials: This week: review and questions. **Help Centers:** Monday-Friday 2:30-6:30 in MC 106.

There will be two **review sessions** before the final exam, announced by e-mail via OWL.

Review of Section 5.2: Orthogonal Complements and Orthogonal Projections

Orthogonal Complements

Definition: Let W be a subspace of \mathbb{R}^n . A vector \vec{v} is **orthogonal** to W if \vec{v} is orthogonal to every vector in W . The $\bm{{\rm orthogonal}}$ $\bm{{\rm complement}}$ of W is the set of all vectors orthogonal to W and is denoted W^\perp . So

 $W^{\perp} = {\vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0 \text{ for all } \vec{w} \text{ in } W}$

Orthogonal projection

 $\textbf{Definition:}$ Let W be a subspace of \mathbb{R}^n and let $\{\vec{u}_1, \ldots, \vec{u}_k\}$ be an orthogonal basis for W . For \vec{v} in \mathbb{R}^n , the **orthogonal projection** of \vec{v} onto W is the vector

 $proj_W(\vec{v}) = \text{proj}_{\vec{u}_1}(\vec{v}) + \cdots + \text{proj}_{\vec{u}_k}(\vec{v})$

The ${\sf component\ of\ } \vec v$ ${\sf orthogonal\ to\ } W$ is the vector

 $perp_W(\vec{v}) = \vec{v} - \text{proj}_W(\vec{v})$

We showed that $\mathrm{proj}_W(\vec{v})$ is in W and $\mathrm{perp}_W(\vec{v})$ is in W^\perp .

Here and in the rest of Section 5.2, we assume that every subspace has at least one orthogonal basis.

Theorem 5.11: Let W be a subspace of \mathbb{R}^n and let \vec{v} be a vector in \mathbb{R}^n . Then there are **unique** vectors \vec{w} in W and \vec{w}^\perp in W^\perp such that $\vec{v} = \vec{w} + \vec{w}^\perp.$

 $\bf Theorem~5.13:$ If W is a subspace of \mathbb{R}^n , then

 $\dim W + \dim W^\perp = n$

The Rank Theorem follows if we take $W=\mathrm{row}(A)$, since then $W^{\perp} = \mathrm{null}(A).$

Section 5.3: The Gram-Schmidt Process and the QR Factorization

The Gram-Schmidt Process

This is a fancy name for a way of converting a basis into an orthogonal or orthonormal basis. And it's pretty clear how to do it, given what we know.

<code>Theorem 5.15 (The Gram-Schmidt Process): Let $\{\vec{x}_1, \ldots, \vec{x}_k\}$ be a</code> basis for a subspace W of \mathbb{R}^n . Write $W_1 = \text{span}(\vec{x}_1)$, $W_2 = \text{span}(\vec{x}_1, \vec{x}_2)$, \ldots , $W_k = \mathrm{span}(\vec{x}_1, \ldots, \vec{x}_k)$. Define:

$$
\begin{aligned} \vec{v}_1 &= \vec{x}_1 \\ \vec{v}_2 &= \text{perp}_{W_1}(\vec{x}_2) = \vec{x}_2 - \frac{\vec{v}_1 \cdot \vec{x}_2}{\vec{v}_1 \cdot \vec{v}_1} \, \vec{v}_1 \\ \vec{v}_3 &= \text{perp}_{W_2}(\vec{x}_3) = \vec{x}_3 - \frac{\vec{v}_1 \cdot \vec{x}_3}{\vec{v}_1 \cdot \vec{v}_1} \, \vec{v}_1 - \frac{\vec{v}_2 \cdot \vec{x}_3}{\vec{v}_2 \cdot \vec{v}_2} \, \vec{v}_2 \\ & \vdots \\ \vec{v}_k &= \text{perp}_{W_{k-1}}(\vec{x}_k) = \vec{x}_k - \frac{\vec{v}_1 \cdot \vec{x}_k}{\vec{v}_1 \cdot \vec{v}_1} \, \vec{v}_1 - \cdots - \frac{\vec{v}_{k-1} \cdot \vec{x}_k}{\vec{v}_{k-1} \cdot \vec{v}_{k-1}} \, \vec{v}_{k-1} \end{aligned}
$$

Then for each i , $\{\vec{v}_1,\ldots,\vec{v}_i\}$ is an orthogonal basis for W_i . In particular,

 $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is an orthogonal basis for $W=W_k.$

Notes: To compute $\operatorname{perp}_{W_i}$ you have to use the *orthogonal* basis of \vec{v}_j 's that you have constructed already, not the original basis of \vec{x}_j 's.

The basis you get depends on the order of the vectors you start with. You should always do a question using the vectors in the order given, since that order will be chosen to minimize the arithmetic.

If you are asked to find an orthonormal basis, normalize each \vec{v}_j at the end. (It is correct to normalize earlier, but can be messier.)

New material

Example 5.13: Apply Gram-Schmidt to construct an orthogonal basis for the subspace $W = \mathrm{span}(\vec{x}_1, \vec{x}_2, \vec{x}_3)$ of \mathbb{R}^4 where

$$
\vec{x}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix}
$$

On board, scaling intermediate results. We get

$$
\vec{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \quad \vec{v}'_2 = \begin{bmatrix} 3 \\ 3 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{v}'_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix}
$$

If we want an orthonormal basis, we scale these:

$$
{\vec q}_1=\tfrac{1}{\|\vec v_1\|}\vec v_1=\frac{1}{2}\begin{bmatrix}1\\-1\\-1\\1\end{bmatrix},\ {\vec q}_2=\tfrac{1}{\|\vec v_2'\|}\vec v_2'=\frac{1}{\sqrt{20}}\begin{bmatrix}3\\3\\1\\1\end{bmatrix}\! ,
$$

$$
\vec{q}_3=\tfrac{1}{\|\vec{v}_3'\|}\vec{v}_3'=\frac{1}{\sqrt{6}}\begin{bmatrix}-1\\0\\1\\2\end{bmatrix}
$$

Note: You don't need to check that the starting vectors are linearly independent. If they are dependent, then one or more of the \vec{v}_j 's will be $\vec{0}$, and you can just ignore it.

Example: Is
$$
\vec{w} = \begin{bmatrix} 8 \\ -2 \\ 2 \\ 0 \end{bmatrix}
$$
 in *W*?

Solution: We can compute that

$$
\mathrm{proj}_W(\vec{w}) = 2\vec{v}_1 + \vec{v}_2' - \vec{v}_3' = \begin{bmatrix} 6 \\ 1 \\ -2 \\ 1 \end{bmatrix}
$$

so the answer is no.

Example: Compute the projection of
$$
\vec{w} = \begin{bmatrix} 8 \\ -2 \\ 2 \\ 0 \end{bmatrix}
$$
 onto $\text{span}(\vec{x}_1, \vec{x}_2)$.

 ${\sf Solution}\colon$ We use that ${\rm span}(\vec x_1, \vec x_2) = {\rm span}(\vec v_1, \vec v_2')$. So, by the work done for the previous example, we get $2\vec{v}_1 + \vec{v}'_2$. (Do not try to work directly with \vec{x}_1 and \vec{x}_2 .) 2 2

Example 5.14: Find an orthogonal basis for \mathbb{R}^3 that contains the vector $\vec{v}_1 = \left| \begin{array}{c} \texttt{i} \ 2 \end{array} \right|.$ $\overline{}$ 1 2 3 $\overline{}$ $\overline{}$

 ${\sf Solution}\colon$ Choose any two vectors \vec{x}_2 and \vec{x}_3 so that $\{\vec{v}_1,\vec{x}_2,\vec{x}_3\}$ is a basis for $\mathbb{R}^3.$ For example, you can take

$$
\vec{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \vec{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

Then apply Gram-Schmidt, using the vectors in that order, so \vec{v}_1 doesn't change. (Details in text.)

QR Factorization

We can apply the above to obtain:

Theorem 5.16: Let A be an $m \times n$ matrix with **linearly independent** ${\bf columns}$. Then A can be factored as $A = QR$, where Q is an $m \times n$ matrix with orthonormal columns and R is an invertible upper triangular $n \times n$ matrix.

Note that we must have $m\geq n$. (Why?)

This is useful for numerically approximating eigenvalues (see the Exploration after Section 5.3) and for least squares approximation (Chapter 7), but we won't cover these applications.

Explanation: Write $\vec{a}_1, \ldots, \vec{a}_n$ for the linearly independent columns of A . Apply Gram-Schmidt to produce orthonormal vectors ${\vec q}_1, \ldots, {\vec q}_n$ with $\text{span}(\vec a_1, \dots, \vec a_i) = \text{span}(\vec q_1, \dots, \vec q_i)$ for each $i.$ Therefore we can find scalars r_{ij} such that:

$$
\begin{aligned}\n\vec{a}_1 &= r_{11}\vec{q}_1\\ \n\vec{a}_2 &= r_{12}\vec{q}_1 + r_{22}\vec{q}_2\\ \n\vdots\\ \n\vec{a}_n &= r_{1n}\vec{q}_1 + r_{2n}\vec{q}_2 + \dots + r_{nn}\vec{q}_n\n\end{aligned}
$$

That is,

$$
A=[\begin{matrix}\vec{a}_1\cdots \vec{a}_n\end{matrix}]=[\begin{matrix}\vec{q}_1\cdots \vec{q}_n\end{matrix}]\begin{bmatrix}r_{11}&r_{12}&\cdots &r_{1n}\\0&r_{22}&\cdots&r_{2n}\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&r_{nn}\end{bmatrix}=QR
$$

One can also see that the diagonal entries r_{ii} are non-zero. (Explain.) Therefore, $\det R \neq 0$ and R is invertible.

Note that $r_{ij} = \vec{q}_i \cdot \vec{a}_j$.

Example 5.15: Find a QR factorization of $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$. $\overline{}$ $\overline{}$ $\overline{\mathcal{L}}$ \vert 1 −1 −1 1 2 1 0 1 2 2 1 2 \overline{a} \overline{a} \vert \vert

Solution: The columns of A are the vectors from Example 5.13, so we get the matrix

$$
Q=\begin{bmatrix} 1/2 & 3/\sqrt{20} & -1/\sqrt{6} \\ -1/2 & 3/\sqrt{20} & 0 \\ -1/2 & 1/\sqrt{20} & 1/\sqrt{6} \\ 1/2 & 1/\sqrt{20} & 2/\sqrt{6} \end{bmatrix}
$$

We want to find R such that $A = QR$. Since the columns of Q are $Q^T Q = I.$ So $Q^T A = Q^T Q R = R$ and one can compute R by matrix multiplication to find

$$
R=Q^TA=\cdots=\begin{bmatrix}2&1&1/2\\0&\sqrt{5}&3\sqrt{5}/2\\0&0&\sqrt{6}/2\end{bmatrix}
$$

(See text for details.) Note that you can save some work, since you know that the entries below the diagonal must be zero.

Also note that this matrix multiplication is exactly working out the components of \vec{a}_i with respect to the orthonormal basis of ${\vec{q}}_j$'s, using that $r_{ij} = \vec{q}_i \cdot \vec{a}_j.$

Section 5.4: Orthogonal Diagonalization of Symmetric Matrices

In Section 4.4 we learned all about diagonalizing a square matrix A . One of the difficulties that arose is that a matrix with real entries can have complex eigenvalues. In this section, we focus on the case where A is a symmetric matrix, and we will show that the eigenvalues of A are always real and that \pmb{A} is alway diagonalizable!

Recall that a square matrix A is symmetric if $A^T = A$.

Examples: $\begin{bmatrix} 1 & 2 \ 2 & 3 \end{bmatrix}$, $\begin{bmatrix} 3 & 2 \ 2 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \ 0 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix}$. Non-examples: $\begin{vmatrix} 3 & -2 \ 2 & 3 \end{vmatrix}$, $\begin{vmatrix} 1 & 2 & 3 \ 5 & 4 & 5 \end{vmatrix}$. **Example 5.16:** If possible, diagonalize $A = \begin{bmatrix} 1 & 2 \ 2 & -2 \end{bmatrix}$. On board, if time. 2 $\begin{bmatrix} 2 \ 3 \end{bmatrix}$, $\begin{bmatrix} 3 & 2 \ 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 2 \ 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \ 0 & 3 \end{bmatrix}$ 0 3 $\overline{}$ $\overline{}$ 1 2 3 2 4 5 3 5 6 \overline{a} \overline{a} 2 -2 3 $\overline{}$ $\overline{}$ 1 5 3 2 4 2 3 5 6 \overline{a} \overline{a} 2 2 -2

Definition: A square matrix A is **orthogonally diagonalizable** if there exists an orthogonal matrix Q such that Q^TAQ is a diagonal matrix D .