
Math 1600B Lecture 35, Section 2, 2 Apr 2014

Announcements:

Today we finish 5.3 and start 5.4. Read Section 5.4 for next class. Work
through recommended homework questions.

Tutorials: This week: review and questions.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

There will be two review sessions before the final exam, announced by
e-mail via OWL.

Review of Section 5.2: Orthogonal Complements and
Orthogonal Projections

Orthogonal Complements

Definition: Let  be a subspace of . A vector  is orthogonal to  if 
is orthogonal to every vector in . The orthogonal complement of  is

the set of all vectors orthogonal to  and is denoted . So

Orthogonal projection

Definition: Let  be a subspace of  and let  be an
orthogonal basis for . For  in , the orthogonal projection of  onto

 is the vector

The component of  orthogonal to  is the vector

We showed that  is in  and  is in .
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Here and in the rest of Section 5.2, we assume that every subspace has at
least one orthogonal basis.

Theorem 5.11: Let  be a subspace of  and let  be a vector in .

Then there are unique vectors  in  and  in  such that

.

Theorem 5.13: If  is a subspace of , then

The Rank Theorem follows if we take , since then

.

Section 5.3: The Gram-Schmidt Process and the QR
Factorization

The Gram-Schmidt Process

This is a fancy name for a way of converting a basis into an orthogonal or
orthonormal basis. And it's pretty clear how to do it, given what we know.

Theorem 5.15 (The Gram-Schmidt Process): Let  be a
basis for a subspace  of . Write , ,

, . Define:

Then for each ,  is an orthogonal basis for . In particular,
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 is an orthogonal basis for .

Notes: To compute  you have to use the orthogonal basis of 's

that you have constructed already, not the original basis of 's.

The basis you get depends on the order of the vectors you start with. You
should always do a question using the vectors in the order given, since that
order will be chosen to minimize the arithmetic.

If you are asked to find an orthonormal basis, normalize each  at the end.

(It is correct to normalize earlier, but can be messier.)

New material

Example 5.13: Apply Gram-Schmidt to construct an orthogonal basis for

the subspace  of  where

On board, scaling intermediate results. We get

If we want an orthonormal basis, we scale these:
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Note: You don't need to check that the starting vectors are linearly

independent. If they are dependent, then one or more of the 's will be ,

and you can just ignore it.

Example: Is  in ?

Solution: We can compute that

so the answer is no.

Example: Compute the projection of  onto .

Solution: We use that . So, by the work done

for the previous example, we get . (Do not try to work directly with
 and .)

Example 5.14: Find an orthogonal basis for  that contains the vector

.
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Solution: Choose any two vectors  and  so that  is a basis

for . For example, you can take

Then apply Gram-Schmidt, using the vectors in that order, so  doesn't
change. (Details in text.)

QR Factorization

We can apply the above to obtain:

Theorem 5.16: Let  be an  matrix with linearly independent
columns. Then  can be factored as , where  is an 
matrix with orthonormal columns and  is an invertible upper triangular

 matrix.

Note that we must have . (Why?)

This is useful for numerically approximating eigenvalues (see the
Exploration after Section 5.3) and for least squares approximation (Chapter
7), but we won't cover these applications.

Explanation: Write  for the linearly independent columns of .
Apply Gram-Schmidt to produce orthonormal vectors  with

 for each . Therefore we can find
scalars  such that:

That is,

x⃗ 2 x⃗ 3 { , , }v ⃗ 1 x⃗ 2 x⃗ 3
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A m × n
A A = QR Q m × n

R
n × n

m ≥ n

, … ,a⃗ 1 a⃗ n A
, … ,q ⃗ 1 q ⃗ n
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One can also see that the diagonal entries  are non-zero. (Explain.)
Therefore,  and  is invertible.

Note that .

Example 5.15: Find a QR factorization of .

Solution: The columns of  are the vectors from Example 5.13, so we get
the matrix

We want to find  such that . Since the columns of  are

orthonormal, we have . So  and one can
compute  by matrix multiplication to find

(See text for details.) Note that you can save some work, since you know
that the entries below the diagonal must be zero.

Also note that this matrix multiplication is exactly working out the
components of  with respect to the orthonormal basis of 's, using that
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.

Section 5.4: Orthogonal Diagonalization of Symmetric
Matrices

In Section 4.4 we learned all about diagonalizing a square matrix . One of
the difficulties that arose is that a matrix with real entries can have complex
eigenvalues. In this section, we focus on the case where  is a symmetric
matrix, and we will show that the eigenvalues of  are always real and that

 is alway diagonalizable!

Recall that a square matrix  is symmetric if .

Examples: , , , .

Non-examples: , .

Example 5.16: If possible, diagonalize . On board, if time.

Definition: A square matrix  is orthogonally diagonalizable if there

exists an orthogonal matrix  such that  is a diagonal matrix .
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