
Math 1600B Lecture 36, Section 2, 4 April 2014

Announcements:

Today we finish Section 5.4 and finish the course material. Re-read
Chapters 1 through 5 for the final. Work through recommended homework
questions and more.

No class on Monday!

Help Centers: Mon-Fri 2:30-6:30 in MC 106, until Thurs, Apr 10.
Office Hours: By appointment: e-mail me
Review Sessions: Thursday, April 17 (me) and Monday, April 21 (TA), both
12:30-1:30 in MC110. Bring questions.

Final exam: Covers whole course, with an emphasis on the material after
the midterm. It does not cover , code vectors, Markov chains or network
analysis. Everything else we covered in class is considered exam material.
Questions are similar to textbook questions, midterm questions and quiz
questions.

Review of Section 5.4 from last class

Section 5.4: Orthogonal Diagonalization of Symmetric
Matrices

In Section 4.4 we learned all about diagonalizing a square matrix . One of
the difficulties that arose is that a matrix with real entries can have complex
eigenvalues. In this section, we focus on the case where  is a symmetric
matrix, and we will show that the eigenvalues of  are always real and that

 is always diagonalizable!

Symmetric matrices are important in applications. For example, in quantum
theory, they correspond to observable quantities.

Recall that a square matrix  is symmetric if .
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Examples: , , , .

Non-examples: , .

Example 5.16: If possible, diagonalize .

We found that  has real eigenvalues, is diagonalizable, and that the
eigenvectors are orthogonal.

New material

Definition: A square matrix  is orthogonally diagonalizable if there

exists an orthogonal matrix  such that  is a diagonal matrix .

Notice that if  is orthogonally diagonalizable, then , so

. Therefore

We have proven:

Theorem 5.17: If  is orthogonally diagonalizable, then  is symmetric.

The rest of this section is working towards proving that every symmetric
matrix  is orthogonally diagonalizable. I'll organize this a bit more
efficiently than the textbook.

Theorem 5.19: If  is a symmetric matrix, then eigenvectors
corresponding to distinct eigenvalues of  are orthogonal.

In non-symmetric examples we've seen earlier, the eigenvectors were not
orthogonal.
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Proof: Suppose  and  are eigenvectors corresponding to distinct
eigenvalues  and . Then we have

So , which implies that .

Theorem 5.18: If  is a real symmetric matrix, then the eigenvalues of 
are real.

To prove this, we have to recall some facts about complex numbers. If
, then its complex conjugate is , which is the

reflection in the real axis. So  is real if and only if .

Proof: Suppose that  is an eigenvalue of  with eigenvector . Then the
complex conjugate  is an eigenvector with eigenvalue , since

If , then Theorem 5.19 shows that .

But if  then  and so

since . Therefore, , so  is real. 

Example 5.17 and 5.18: The eigenvalues of  are  and

, with eigenspaces
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We see that every vector in  is orthogonal to every vector in . (In fact,

.)

But notice that the vectors in  aren't necessarily orthogonal to each
other. However, we can apply Gram-Schmidt to get an orthogonal basis for

:

We normalize the three basis eigenvectors and put them in the columns of a

matrix  Then ,

so  is orthogonally diagonalizable.

The spectral theorem

The set of eigenvalues of a matrix are called its spectrum because the
spectral lines you see when light from an atom is sent through a prism
correspond to the eigenvalues of a certain matrix.
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Theorem 5.20 (The spectral theorem): Let  be an  real matrix.
Then  is symmetric if and only if  is orthogonally diagonalizable.

Proof: We have seen that every orthogonally diagonalizable matrix is
symmetric.

We also know that if  is symmetric, then it's eigenvectors for distinct
eigenvalues are orthogonal. So, by using Gram-Schmidt on the eigenvectors
with the same eigenvalue, we get an orthogonal set of eigenvectors.

The only thing that isn't clear is that we get  eigenvectors. The argument
here is a bit complicated. See the text. .

Method for orthogonally diagonalizing a real symmetric 
matrix A:
1. Find all eigenvalues. They will all be real, and the algebraic multiplicities
will add up to .
2. Find a basis for each eigenspace.
3. If an eigenspace has dimension greater than one, use Gram-Schmidt to
create an orthogonal basis of that eigenspace.
4. Normalize all basis vectors. Put them in the columns of , and make the
eigenvalues (in the same order) the diagonal entries of a diagonal matrix .

5. Then .

Note that  can be expressed in terms of its eigenvectors  and
eigenvalues  (repeated according to their multiplicity) as
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This is called the spectral decomposition of .

Note that the  matrix  sends a vector  to

, so it is orthogonal projection onto

. Thus you can compute  by projecting  onto each ,
multiplying by , and adding the results.

Example 5.20: Find a  matrix with eigenvalues 3 and -2 and

corresponding eigenvectors  and .

Method 1: Let  and . Then

This didn't use anything from this section and works for any diagonalizable
matrix.

Method 2: First normalize the eigenvectors to have length 1. Then use the
spectral decomposition:
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This method only works because the given vectors are orthogonal.

See Example 5.19 in the text for another example.

True/false: The matrix

is diagonalizable.

True/false: It's eigenvalues are real.

True/false: Any two eigenvectors are orthogonal.

It's been fun! Good luck on the final!
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