
Math 1600B Lecture 4, Section 2, 13 Jan 2014

Announcements:

Read Section 1.3 for next class. Work through recommended homework
questions.

Tutorials start this week, and include a quiz covering Sections 1.1, 1.2 as
well as the code vectors part of 1.4. It does not cover Section 1.3 or the
Exploration after Section 1.2.
The quizzes last 20 minutes, and are at the end of the tutorial, so you have
time for questions at the beginning.
Questions are similar to homework questions, but may be slightly different.
There will be two true/false questions, for which you must explain your
answers.
You must write in the tutorial you are registered in.
Different sections have different quizzes, but it is still considered an
academic offense to share information about quizzes.

Office hour: today, 1:30-2:30, MC103B.
My office hour on Wednesday is cancelled this week.

Lecture notes (this page) available from course web page.
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(Actually, a quiz this week and a midterm in 6 1/2 weeks...)

Partial review of last lecture:

Section 1.2: Length and Angle: The Dot Product

Definition: The dot product or scalar product of vectors  and  in 
is the real number defined by

This has familiar properties; see Theorem 1.2.

Definition: The length or norm of  is the scalar  defined by

A vector of length 1 is called a unit vector.

Theorem 1.5: The Triangle Inequality: For all 
and  in ,

u⃗ v ⃗ Rn

⋅ := + ⋯ + .u⃗ v ⃗ u1v1 unvn

v ⃗ ∥ ∥v ⃗ 

∥ ∥ := = .v ⃗ ⋅v ⃗ v ⃗ − −−√ + ⋯ +v2
1 v2

n

− −−−−−−−−−√

u⃗ 
v ⃗ Rn

∥ + ∥ ≤ ∥ ∥ + ∥ ∥.u⃗ v ⃗ u⃗ v ⃗ 
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uWe define the distance between vectors  and  by
the formula

Angles from dot product

Theorem 1.4: The Cauchy-Schwarz Inequality: For all  and  in ,

We can therefore use the dot product to define the angle between two
vectors  and  in  by the formula

where we choose . This makes sense because the fraction is
between -1 and 1.

The formula can also be written

New material

Orthogonal Vectors

How can we tell whether two vectors are orthogonal / perpendicular?
Easy:  is the only angle for which .
So  and  are orthogonal if and only if .

Example: If  and  in , then
, so  and  are

orthogonal.

Also,  and  in  are orthogonal, since
.

u⃗ v ⃗ 

d( , ) := ∥ − ∥ = .u⃗ v ⃗ u⃗ v ⃗ ( − + ⋯ + ( −u1 v1)2
un vn)2

− −−−−−−−−−−−−−−−−−−−−−−√

u⃗ v ⃗ Rn

| ⋅ | ≤ ∥ ∥ ∥ ∥.u⃗ v ⃗ u⃗ v ⃗ 

u⃗ v ⃗ Rn

cos θ = , i.e., θ := arccos( ),
⋅u⃗ v ⃗ 

∥ ∥ ∥ ∥u⃗ v ⃗ 
⋅u⃗ v ⃗ 

∥ ∥ ∥ ∥u⃗ v ⃗ 

0 ≤ θ ≤ 180∘

⋅ = ∥ ∥ ∥ ∥ cos θ.u⃗ v ⃗ u⃗ v ⃗ 

θ = 90∘ cos θ = 0
u⃗ v ⃗ ⋅ = 0u⃗ v ⃗ 

= [1, 2, 3]u⃗ = [1, 1, −1]v ⃗ R3

⋅ = 1 ⋅ 1 + 2 ⋅ 1 + 3 ⋅ (−1) = 1 + 2 − 3 = 0u⃗ v ⃗ u⃗ v ⃗ 

= [1, 2, 3]u⃗ = [1, 1, 1]v ⃗ Z3
3

⋅ = 1 + 2 + 3 = 6 = 0 (mod 3)u⃗ v ⃗ 
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Pythagorean theorem in : If  and  are orthogonal, then

Explain on board, using Theorem 1.2.

Projections

Use board to derive formula for the projection of  onto :

Here  must not be , but  can be any vector. To help remember the
formula, note that the denominator ensures that the answer does not
depend on the length of .

The applet we saw before is useful for understanding projections as well.
Java version.

Example: If  and  then

Questions

True/false: If ,  and  are vectors in  such that  and

, then .

False. For example, if ,  and , then 
and  but .

True/false: If  is orthogonal to both  and , then  is orthogonal to
.

Rn u⃗ v ⃗ 

∥ + = ∥ + ∥ .u⃗ v ⃗ ∥2
u⃗ ∥2

v ⃗ ∥2

v ⃗ u⃗ 

( ) = ( ) .proju ⃗ v ⃗ 
⋅u⃗ v ⃗ 
⋅u⃗ u⃗ 

u⃗ 

u⃗ 0⃗ v ⃗ 

u⃗ 

= [−1, 1, 0]u⃗ = [1, 2, 3]v ⃗ 

( ) =proju ⃗ v ⃗ 
⋅u⃗ v ⃗ 
⋅u⃗ u⃗ 

u⃗ = [−1, 1, 0]
−1 + 2 + 0
1 + 1 + 0

= [−1, 1, 0] = [− , , 0]
1
2

1
2

1
2

u⃗ v ⃗ w⃗ Rn ⋅ = ⋅u⃗ v ⃗ u⃗ w⃗ 
≠u⃗ 0⃗ =v ⃗ w⃗ 

= [1, 0]u⃗ = [0, 1]v ⃗ = [0, 2]w⃗ ⋅ = 0u⃗ v ⃗ 
⋅ = 0u⃗ w⃗ ≠v ⃗ w⃗ 

u⃗ v ⃗ w⃗ u⃗ 
2 + 3v ⃗ w⃗ 
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True, because .

You only answer true if a statement is always true. You justify this answer
by giving a general explanation of why it is always true, not just an example
where it happens to be true.

You answer false if a statement can in some case be false. You justify this
answer by giving an explicit example where the statement is false.

Question: Suppose I tell you that  and . What is
?

Solution: .

Question: Does  always point in the same direction as ?

Solution: No. It is always parallel, but might point in the opposite direction.
For example, if  and  then .

Section 1.4: Applications: Code Vectors (we aren't
covering force vectors)

We're going to study a way to encode data that allows us to detect
transmission errors. Used on CDs, UPC codes, ISBN numbers, credit card
numbers, etc.

Example 1.37: Suppose we want to send the four commands "forward",
"back", "left" and "right" as a sequence of 0s and 1s. We could use the
following code:

But if there is an error in our transmission, the Mars rover will get the wrong
message and will drive off of a cliff, wasting billions of dollars of taxpayer
money (but making for some good NASA jokes).

Here's a more clever code:

⋅ (2 + 3 ) = 2 ⋅ + 3 ⋅ = 2(0) + 3(0) = 0u⃗ v ⃗ w⃗ u⃗ v ⃗ u⃗ w⃗ 

⋅ = 1/2u⃗ v ⃗ ⋅ = −1u⃗ w⃗ 
⋅ (2 + 3 )u⃗ v ⃗ w⃗ 

⋅ (2 + 3 ) = 2 ⋅ + 3 ⋅ = 2(1/2) + 3(−1) = −2u⃗ v ⃗ w⃗ u⃗ v ⃗ u⃗ w⃗ 

( )proju ⃗ v ⃗ u⃗ 

= [1, 0]u⃗ = [−1, 1]v ⃗ ( ) = [−1, 0] = −proju ⃗ v ⃗ u⃗ 

forward = [0, 0], back = [0, 1], left = [1, 0], right = [1, 1].

forward = [0, 0, 0], back = [0, 1, 1], left = [1, 0, 1], right = [1, 1, 0].
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If any single bit (binary digit, a 0 or a 1) is flipped during transmission, the
Mars rover will notice the error, since all of the code vectors have an even
number of 1s. It could then ask for retransmission of the command.

This is called an error-detecting code. Note that it is formed by adding a
bit to the end of each of the original code vectors so that the total number
of 1s is even.

In vector notation, we replace a vector  with the vector

 such that , where

.

Exactly the same idea works for vectors in ; see Example 1.39 in the text.

Note: One problem with the above scheme is that transposition errors are
not detected: if we want to send  but the first two bits are
exchanged, the rover receives , which is also a valid command. We'll
see codes that can detect transpositions.

Example 1.40 (UPC Codes): The Univeral Product Code

(bar code) on a product is a vector in , such as

Instead of using  as the check vector, UPC uses

The last digit is chosen so that .

For example, if we didn't know the last digit of , we could compute

and so we would find that we need to take , since
.

This detects any single error. The pattern in  was chosen so that it detects
many transpositions, but it doesn't detect when digits whose difference is 5

= [ , , … , ]b ⃗ v1 v2 vn

= [ , , … , , d]v ⃗ v1 v2 vn ⋅ = 0 (mod 2)1⃗ v ⃗ 
= [1, 1, … , 1]1⃗ 

Zn
3

[0, 1, 1]
[1, 0, 1]

Z12
10

= [6, 7, 1, 8, 6, 0, 0, 1, 3, 6, 2, 4].u⃗ 

1⃗ 

= [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1].c ⃗ 

⋅ = 0 (mod 10)c ⃗ u⃗ 

u⃗ 

⋅ [6, 7, 1, 8, 6, 0, 0, 1, 3, 6, 2, d] = ⋯ = 6 + d (mod 10)c ⃗ 

d = 4
6 + 4 = 0 (mod 10)

c ⃗ 
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are transposed. For example,  and , and
these are the same modulo .

Example 1.41 (ISBN Codes): ISBN codes use vectors in . The check
vector is . Because 11 is a prime number,
this code detects all single errors and all single transposition errors.

Summary: To create a code, you choose  (which determines the allowed
digits),  (the number of digits in a code word), and a check vector

. Then the valid words  are those with . If  ends in a ,
then you can always choose the last digit of  to make it valid.

Note: This kind of code can only reliably detect one error, but more
sophisticated codes can detect multiple errors. There are even error-
correcting codes, which can correct multiple errors in a transmission
without needing it to be resent. In fact, you can drill small holes in a CD, and
it will still play the entire content perfectly.

Question: The Dan code uses vectors in  with check vector .
Find the check digit  in the code word .

Solution: We compute

To make , we choose .

This is the end of the material for quiz 1.

3 ⋅ 5 + 1 ⋅ 0 = 15 3 ⋅ 0 + 1 ⋅ 5 = 5
10

Z10
11

= [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]c ⃗ 

m
n

∈c ⃗ Zn
m v ⃗ ⋅ = 0c ⃗ v ⃗ c ⃗ 1

v ⃗ 

Z3
4 = [3, 2, 1]c ⃗ 

d = [2, 2, d]v ⃗ 

⋅ = [3, 2, 1] ⋅ [2, 2, d]c ⃗ v ⃗ = 3 ⋅ 2 + 2 ⋅ 2 + 1 ⋅ d

= 10 + d = 2 + d (mod 4)

⋅ = 0 (mod 4)c ⃗ v ⃗ d = 2
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