
The Billion Dollar Eigenvector

The mathematics behind Google’s
pagerank algorithm

Dan Christensen



The Web

Google came to prominence, and became a multi-billion dollar
corporation, because they were able to provide the most relevant
search results.

How do they do it? We’ll describe a simplified version of their
PageRank algorithm.

To make things concrete let’s consider a simplified web with only
four pages that are linked as follows:

1

3

2

4



PageRank

The idea behind PageRank is that we should give each page a score
which is based on the number of links to that page.

So, in our example network

1

3

2

4

page 1 should rank highly because it has a lot of incoming links.
So the scores might be:

x1 = 3, x2 = 2, x3 = 1, x4 = 2 ?



Some votes matter more

There are two extra tricks that make this work well.

First, links from a page that has a high PageRank score should
count for more.

This would suggest formulas such as

x1 = x2 + x3 + x4

x2 = x1 + x4

x3 = x4

x4 = x2 + x3

1

3

2

4

But, there are various problems with this.
For example, there is no non-zero solution to this system!



Some votes matter more

There are two extra tricks that make this work well.

First, links from a page that has a high PageRank score should
count for more.

This would suggest formulas such as

x1 = x2 + x3 + x4

x2 = x1 + x4

x3 = x4

x4 = x2 + x3

1

3

2

4

But, there are various problems with this.
For example, there is no non-zero solution to this system!



Sharing the vote

The second trick is that when a page links to several other pages,
the score it gives to them should be shared, giving:

x1 =
1

2
x2 +

1

2
x3 +

1

3
x4

x2 = x1 +
1

3
x4

x3 =
1

3
x4

x4 =
1

2
x2 +

1

2
x3

1

3

2

4

This approach works well! For our web, it gives:

x1 = 4, x2 = 5, x3 = 1, x4 = 3,

with page 2 ranked the highest.



Matrix form

The equations we got

x1 =
1

2
x2 +

1

2
x3 +

1

3
x4

x2 = x1 +
1

3
x4

x3 =
1

3
x4

x4 =
1

2
x2 +

1

2
x3

can be written in matrix form:

x = Ax

where

x =


x1
x2
x3
x4

 and A =


0 1

2
1
2

1
3

1 0 0 1
3

0 0 0 1
3

0 1
2

1
2 0





Eigenvectors

We know that solving the system

x = Ax

is called finding an eigenvector of A with eigenvalue 1. Since A is a
stochastic matrix, such an x always exists.

What’s more surprising is that there is an efficient way to compute
it, even when A is huge. (It might be 10 billion by 10 billion!)

For more details, see the excellent article by Kurt Bryan and Tanya
Leise at

http://www.rose-hulman.edu/~bryan/google.html

Or just put “google eigenvector” into Google and you’ll find it!

PS: When you are rich, don’t forget who taught you
Linear Algebra!

http://www.rose-hulman.edu/~bryan/google.html


Eigenvectors

We know that solving the system

x = Ax

is called finding an eigenvector of A with eigenvalue 1. Since A is a
stochastic matrix, such an x always exists.

What’s more surprising is that there is an efficient way to compute
it, even when A is huge. (It might be 10 billion by 10 billion!)

For more details, see the excellent article by Kurt Bryan and Tanya
Leise at

http://www.rose-hulman.edu/~bryan/google.html

Or just put “google eigenvector” into Google and you’ll find it!

PS: When you are rich, don’t forget who taught you
Linear Algebra!

http://www.rose-hulman.edu/~bryan/google.html


Eigenvectors

We know that solving the system

x = Ax

is called finding an eigenvector of A with eigenvalue 1. Since A is a
stochastic matrix, such an x always exists.

What’s more surprising is that there is an efficient way to compute
it, even when A is huge. (It might be 10 billion by 10 billion!)

For more details, see the excellent article by Kurt Bryan and Tanya
Leise at

http://www.rose-hulman.edu/~bryan/google.html

Or just put “google eigenvector” into Google and you’ll find it!

PS: When you are rich, don’t forget who taught you
Linear Algebra!

http://www.rose-hulman.edu/~bryan/google.html

