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The Web

Google came to prominence, and became a multi-billion dollar
corporation, because they were able to provide the most relevant
search results.

How do they do it? We’ll describe a simplified version of their
PageRank algorithm.

To make things concrete let’s consider a simplified web with only
four pages that are linked as follows:
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PageRank

The idea behind PageRank is that we should give each page a score
which is based on the number of links to that page.

So, in our example network
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page 1 should rank highly because it has a lot of incoming links.
So the scores might be:

x1 = 3, x2 = 2, x3 = 1, x4 = 2 ?



Some votes matter more

There are two extra tricks that make this work well.

First, links from a page that has a high PageRank score should
count for more.

This would suggest formulas such as

x1 = x2 + x3 + x4

x2 = x1 + x4

x3 = x4

x4 = x2 + x3
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But, there are various problems with this.
For example, there is no non-zero solution to this system!
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Sharing the vote

The second trick is that when a page links to several other pages,
the score it gives to them should be shared, giving:
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This approach works well! For our web, it gives:

x1 = 4, x2 = 5, x3 = 1, x4 = 3,

with page 2 ranked the highest.



Matrix form

The equations we got
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can be written in matrix form:

x = Ax

where
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



Eigenvectors

We know that solving the system

x = Ax

is called finding an eigenvector of A with eigenvalue 1. Since A is a
stochastic matrix, such an x always exists.

What’s more surprising is that there is an efficient way to compute
it, even when A is huge. (It might be 10 billion by 10 billion!)

For more details, see the excellent article by Kurt Bryan and Tanya
Leise at

http://www.rose-hulman.edu/~bryan/google.html

Or just put “google eigenvector” into Google and you’ll find it!

PS: When you are rich, don’t forget who taught you
Linear Algebra!

http://www.rose-hulman.edu/~bryan/google.html
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