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§1. INTRODUCTION

LET X be a connected C W-complex, with only a finite number of cells in each dimension,
and let X, denote its n-skeleton. A map f: X — Y is called a phantom map if its restriction
to each X, is null-homotopic. Non-trivial phantom maps are often elusive creatures that are
hard to detect and difficult to visualize. There is one exception, however, and that is the

subject of this paper. The universal phantom map out of X is a map ©: X —\/Z X, that
can be viewed as follows. Identify the space X with the direct limit of its CW-skeletons via
the infinite telescope construction. Thus X ~ Tel(X) where

Tel(X) = |J X.x[n—1,n]/~

nx1

Here each X, x {n} is identified with its image in X4, x {n}. Now lay the telescope on its
side and collapse to a point, cach joint at which the second coordinate is an integer.

Then collapse to a point the seam along the basepoint in the target. The resulting map is
a surjection from Tel(X) to the infinite wedge of reduced suspensions

VIX,=ZX, vIX,VIX,v ...

It is easy to sce that the map just described is a phantom map. Indeed, restrict it to the
first n stages of the telescope, and then deform that portion to the right into X, x {n}. This is
a deformation retraction. Since X, x {n} is sent to the base point in \72X,,, the assertion
follows. Thus @ is one phantom map which is easy to describe. We will show that the
question of whether or not it is essential can, in many cases, be answered.

TOP 32:2-J 3N
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§2. DESCRIPTION OF RESULTS

The main results of this paper are described and discussed in the next three sections. The
proofs are deferred to the last section. Most of the results here deal with phantom maps out
of those pointed spaces that are homotopy equivalent to CW-complexes of finite type. Such
complexes have only a finite number of cells in each dimension. Of course, a space X could
have many different C W-decompositions and so the universal phantom map out of X, as
we've defined it, is not unique. It depends on which finite type decomposition is chosen. We
will assume, in what follows, that a choice has been made.

TueoreM 1. If X has finite type, then the map © is universal among phantom maps out of
X. In other words, given another phantom map f: X — Y, there exists a map f that makes the
Sollowing diagram commute.

x — v

wel / D
VZIX,
It follows, of course, that every phantom map out of X is null homotopic if and only if
© is. With regard to the dependence of © on the choice of CW-decomposition of X, this

result suggests that one choice is as good as the next. The universal property in
Theorem 1 leads to a very simple proof of the following.

CoroLtAry L1 If f: X = Yand g: Y = Z are two phantom maps where X and Y have
Sinite type, then the composition gf: X — Z is null homotopic. a

In recent years, many new examples of phantom maps have been discovered, thanks in
large part, to the work of Mecier [17], [18] and Zabrodsky [26]. The growing list of
examples should cause one to suspect the presence of phantoms whenever dealing with
a domain X, that has infinitc dimensional homology and a range Y, that has infinitely
many nonzero homotopy groups. It is clear that these conditions are necessary—at least
among spaces of finite type, but they are not sufficient for the existence of essential
phantoms. Indeed, there are some infinite dimensional spaces X, out of which all phantoms
vanish! It is these spaces we study next.

THeoReM 2. If X has finite type, then all phantom maps out of X are trivial if and only if

X is a retract of \/ ZX,. a

COROLLARY 2.1. If £ X is equivalent to a bouquet of finite complexes, then the universal
phantom map out of X is trivial. a

Since T X is rationally equivalent to a bouquet of spheres, Corollary 2.1 implies the
following result. In it, we follow Roitberg, [21], in using Ph(X, Y), to denote the set of all
homotopy classes of phantom maps from X to Y.

CoroLLary 2.2, If X has finite type, then Ph{X, Y) = 0 for all rational spaces Y. (O

When Y has finite type over Q, this last result is well known and easy to prove using
a li‘r_'nl argument. The point is, of course, that this restriction on Y is unnecessary. Here is

a familiar loop space to which Corollary 2.1 applies.
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ExampLE 2.3. If X has the homotopy type of QEL,x ... xZL,), where each L, is
a connected finite complex, then TX ~\/ K, where each K, is a finite complex. Thus all
phantom maps out of such an X are trivial. O

§3. WHEN IS £X A RETRACT OF \/IX,?

It would be interesting to know the extent to which Corollary 2.1 characterizes those
spaces X, for which the universal phantom map, Oy, is null homotopic. This is the problem
considered in this section. We begin by asking,

QuesTion 3. If ZX is a retract of \/ X, does it follow that £X ~ V,K, where each
summand K, is finite dimensional?

The general answer to this question is no as the following example shows.

ExampLE 3.1. There exists a CW-complex X, with the property that £X is a retract of
0
\/ ZX, but ZX has no nontrivial finite dimensional retracts. Moreover, this space X can be

taken to have no odd dimensional cells, and at most one cell in each even dimension. ]

However, there are some special cases worth noting where the answer to Question 3 is
yes!

Prorosition 3.2. If H (X Z) is finite for each n sufficiently large then the answer to
Question 3 is yes. In other words, for such spaces X, the universal phantom map out of X is
trivial if and only if £X decomposes into a bouquet of finite complexes. a

Recall that an H,-space is onc that, when rationalized, becomes an H-space. Odd
dimensional spheres, connected compact Lie groups, and complex Stiefel manifolds provide
familiar examples of H,-spaces. Notice that if K is a [-connected finite CHW complex and is
also an H,-space, then by Hopf's theorem it has the rational homotopy type of either
a point or a finite product of odd dimensional spheres. The same is true of its double loop
space, Q2K. In particular, this means that Q2K, which is almost always infinite dimensional,
satisfies the hypothesis of Proposition 3.2. However, there are very few spaces K, that come
to mind for which QK splits apart into a bouquet of finite complexes after just one
suspension. Consider, for example, the sphere S”, with n odd. While a theorem of Snaith
asserts that Q2S" stably splits into an infinite bouquet of finite spectra, this splitting is not
achieved after one suspension. In fact, there is no splitting of 'Q25" into a bouquet of finite
complexes for any finite ¢, even when localized at the prime 2, according to Cohen and
Mahowald [4]. Consequently, there must be essential phantom maps coming out of Q35”.
We will suy more about them later. But for now, let us localize at a prime p, and reconsider

a
retracts of \/ £ X,. The next result suggests that Question 3 is a problem that is best studied

one prime at a time.

THeOREM 3.3. Let X be a CW complex with finite type and let p be a fixed prime. Then
Ph(X, Y) = 0 for all p-local spaces Y if and only if £ X ,, is equivalent to a bouquet of finite
dimensional spaces. O
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Sometimes it is easy to rule out the existence of such splittings. Take, for example, the
case where H*(X;Z/p) is a polynomial algebra. The Steenrod algebra acts on this poly-
nomial algebra in such a way that every nonzero orbit in positive degrees is an infinite set!
As a result, £X,, can have no finite dimensional retracts. In particular, when X = BG, the
classifying space of a compact connected Lie group of rank > 1, it follows by taking
p sufficiently large, that there exist essential phantom maps out of BG.

It seems harder to verify the splitting of X ). when it occurs, than to rule it out when it
doesn't. A case in point is the following conjecture, which seems beyond the reach of current
techniques.

ConECTURE 3.4. [f K is a I-connected finite complex, then for all primes sufficiently large,
LQK, =~ \/,F, where each F, is finite dimensional. a

Recall that a space X is said to be atomic at a prime p, if any self map f, of its completion
I/Y\,, is either an equivalence or, under iteration, f" — 0 in the profinite topology on
[)/(:, j(\,]. [n particular, atomic spaces have no nontrivial idempotents and hence, they have
no proper retracts.

N
CoOROLLARY 3.5. Assume that X has finite type. If for some prime p, either TX , or £X,
has an infinite dimensional atomic retract, then the universal phantom map out of X is
nontrivial. a

Here are some applications of this corollary.

ExaMPLE 3.6. Let G be a compact Lie group. Then the universal phantom map out of BG is
trivial if and only if G is the trivial group. O

The main ingredient in the verification of this example is Quillen’s theorem that relates
mod p cohomology of BG to the clementary abelian p-subgroups of G. The first nontrivial
case, G = Z/2, of this example appears in Lannes [14], p. 112. While Example 3.6 describes
a very general phenomenon, the next one scems to be quite rare.

ExampLe 3.7. Let X = QG, where G = Sp(2), Sp(3), G, or Fy. In each case X is stably
atomic at the prime 2 and thus the universal phantom map out of it is essential. Indeed, it is
stably essential. O

The first two of the four loop spaces just mentioned, were shown to be stably atomic by
M. Hopkins in his Northwestern Ph.D. thesis, [10]. J. Hubbuck then proved all four cases
a different way in [12]. Of course, it is not always possible to translate questions about
phantom maps into ones about stable homotopy. Indeed, we noted earlier that the universal
phantom map out of Q2S", is essential, despite stable appearances to the contrary. The next
example is similar in this respect although its proof is quite different.

ExampLE 3.8. Let X = QSU(3). Then X is stably equivalent to a bouquet of finite spectra,
but the universal phantom map out of X is essential at p = 2. O

We suspect that this result holds for QSU (n), for all n > 3, but only the casec n = 3 will be
proved here. We trust the reader sees why SU(2) must be excluded. A proof of the stable
splitting of QSU(n) was given by M. Crabb and S. Mitchell in [6].

One might be tempted to conclude that if the universal phantom vanishes at every
prime, then it must in fact be trivial. The next example shows this is not the case.
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ExaMpLE 3.9.

Let X = cofiber {1,: \/ S“’—-»S’}
pzl
where for each prime p, x,1S%" = x,(p). There is a phantom map X — S*, that is stably
essential and yet the universal phantom map out of X is trivial at each prime p. O

§4. TARGETS OF FINITE TYPE

Since the outbound universal phantom map takes values in a space not of finite type,
one might suspect that it is almost too sensitive; that it detects things never seen in a world
of finite type. We will show that this suspicion is justified. To this end, we ask

QuesTioN 4. For what spaces X, is Ph(X, Y) = 0 for every target Y of finite type?

When we speak of a target Y, of finite type, we mean that each n, Y is finitely generated,
but we do not require the target to have the homotopy type of a CW-complex. There is
nothing to be gained in doing so. For targets that happen to be CW-complexes, this
condition on the homotopy groups is more restrictive than the one we use for domains X, of
finite type; finite skeletons only imply that cach H,(X; Z) is finitcly generated. Of course, for
simply connected CHW-complexes, the two conditions are equivalent. Getting back to
Question 4, the following example is perhaps an obvious once to consider. It is the only result
in this paper wherein we drop the finite type restriction on the domain, X.

ExampiE 4.1, Let X be a CW-complex whose homology groups, H,(X; Z), are torsion
groups for all n > 1. Then Ph(X, Y) = 0 for every finite type target Y. a

An important special case of this example is the classifying space, BG, for a finite group,
G. Recall from Example 3.6 that the universal phantom map out of such a space is cssential
whenever G # {1}. So this is an instance where the sensitive nature of @ is quite apparent.
The next example represents the other extreme — with no torsion in its homology.

ExampLe 4.2. Fix an odd prime p, and take the cofiber of Toda's a-family on S>. To be
more precise,

let X = coﬁbcr{az: \V S“‘"‘“”--.S’}

t21

where for each t, a|S¥?~V*2 = o Then the universal phantom map out of X is essential, but

again Ph(X, Y) = 0 for all targets Y, of finite type. 0

The next theorem exploits a feature common to both examples; namely the existence of
a less complicated space Z, whose universal phantom is trivial, and map X — Z that induces
an isomorphism in rational homology. In the first example Z would be a point, of course. In
the sccond, it would be a bouquet of spheres.

Tueorem 4.3, Let f: X —»Z be a map that induces a rational homology isomor-
phism  between CW-spaces of finite type. If Y is a finite type target, -then
Ph(Z, Y)=0 = Ph(X, ¥) = 0. O

Meier announced a result like this in [17], with the extra hypothesis that Y be an
H,-space. As far as we know, no proof of it was published.
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CoroLLArY 4.4, Let f- X — Z be as in 4.3. If the universal phantom map out of Z is null
homotopic, then Ph(X, Y) =0 for all finite type targets Y. d

The map f plays a crucial role in this corollary: reverse its direction and the result
becomes false. To see this, consider S — K(Z, 3) or QS* — CP *. In both cases the domain
would be a suitable candidate for Z and the maps could be taken to be rational equi-
valences. However, it is easy to check that there are no maps going in the opposite direction
to play the role of f. Of course, this is as it should be since essential phantom maps are
known to exist from a K(Z, n) to $**!, [8].

Given a l-connected finite CW-complex M, it is a simple matter to construct an
appropriate product of odd dimensional spheres and loop spaces of other odd dimensional
spheres, along with a map,

[1s™+ ' x[]as™* ' —am,
z ]

that induces an isomorphism in rational homology. Finding a map in the opposite direction
that induces a rational homology isomorphism is, however, quite another matter. It is
a central unsolved problem in unstable homotopy theory. The following corollary deals
with one of the few classes of compact spaces for which one knows that such a map exists.

CoroLLARY 4.5. Let K be a l-connected finite H,-space. Then Ph(QK, Y) = 0 for any
finite type space Y. O

Let Aut(X) denote the discrete group of homotopy classes of self equivalences of X and
let X™ denote the Postnikov approximation of X up through dimension n. There is a short
exitct sequence of groups,

WI(X)—— Aut(X) —s lim Aut X,

in which the first group, WI(X), consists of those self equivalences of X that become
homotopic to the identity when restricted to any finite skeleton of X, Roitberg has shown
that Ph(X, X) and WI(X) are isomorphic as groups when X is a homotopy associative
H-space, [21]. These facts, together with Corollary 4.5, imply the next result.

CoRroLLARY 4.6. Let K be as in Corollary 4.5. Then WI(QK) = 0. a

Our last example combines Corollary 4.4 with some deep results of Cohen, Moore and
Neisendorfer on the homotopy groups of spheres and the double suspension.

ExampLe 4.7. There is an essential phantom map QS>3 — HP>, and yet for every prime
p and every n > 1, Ph(Q2S¥"*1, Y,,,) = O for every nilpotent target Y of finite type. O

We have been concerned, in this paper, with phantom maps going out of a given space
X. There is an Eckmann-Hilton dual problem which considers phantom maps coming into
a given space Y. In another paper we will show that while the universal outbound phantom
map, ©, has an Eckmann-Hilton dual, some of its most important properties do not
dualize.

Before giving the proofs, we would like to make a few remarks about the history of this
topic. A. Heller was one of the first to consider phantom maps. It was he who named them!
J. F. Adams and G. Walker gave the first published account of an essential phantom
map—{rom ZCP * to an infinite bouquet of 4-spheres. It was in response to a question from
P. Olum and appeared in [1]. One of the first detailed studies of phantom maps was done
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by B. Gray in his University of Chicago Ph.D thesis, [7], written under the direction of M.
Barratt. Some of the results in this paper were first discovered there. The notion of
a universal phantom map can be found there but it also appears in a paper of J. Lannes
[14]. Letting B denote RP *, Lannes mentions in passing that the universal phantom map
out of B is an example which shows that the restriction to finite type spaces in his theorem,
[B, Y]~ Hom (H*Y, H*B), is necessary. We thank Joe Neisendorfer for bringing
Lannes's example to our attention and also for his help on some key points in this paper.
Thanks go to Fred Cohen for suggesting the examples 225" and QSU(3), as well as the
methods for dealing with them.

§5. PROOFS

Proof of Theorem 1. Take the telescope Tel(X), described at the outset, and collapse to
a point its seam along the basepoint. Call the quotient space T(X). Now identify the
n-skeleton of X with the image of X,x{n—1} in T(X). This defines an inclusion

;0

i \/ X, = T(X) which is easily seen to be a cofibration. There is also an obvious homotopy
equivalence m: T(X) — X, induced by projection on the first factor. Given a phantom map
f: X = Y, let f" = fr in the following diagram

Y
/I\
\V X, —— T(X) ——=\/ 2 X,

Since the restriction of f is null homotopic on each X,, therc is an cxtension f, to the
cofiber of i, and so the result follows. a

In the proofs that follow we will identify T(X) with X by means of the equivalence n.

The corresponding map of \/ X, into X will be denoted as the folding map, #. Its
restriction to each X, is the standard inclusion,
[t might be worth considering another proof of Theorem | in terms of the identification

Ph(X,Y) = liln‘[ZX,‘, Y]
The !i_r_n’ term is a quotient of [ J[£ X, ¥ ], and so for each phantom mapf: X — Y, one can
choose a representative sequence f;: £X, — Y. In particular, when ¥ = \/Z X, and f = O,

=2

the representatives f, can be taken to be the standard inclusions £X, — \/Z X,. Thus, in
this setting the universal property of © is also apparent.

Proof of Corollury 1.1. The following commutative diagram, in which f and g are
phantom maps, is an immediate consequence of Theorem 1.
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The composition going up the diagonal is a phantom because the second map, O, is. The
restriction of this composition to each £ X, is therefore null homotopic since each summand
is a finite complex. Since a map out of a bouquet is completely determined by such
restrictions, we conclude the map along the diagonal is trivial. This, of course, implies that
the horizontal composition gf must likewise be null homotopic. O

Proof of Theorem 2. We begin with the cofiber sequence
VX, -2 x -2, \/ExX,

in which F is the folding map, as before. Now pass three places to the right in the
Barratt-Puppe sequence and consider

2vex, 2 VEx, Losx —

In this sequence, the map © is null homotopic if and only if the next map ¢ has a left inverse.
This, in turn holds if and only if the next map £ % has a right inverse. Recall that with either
inverse one can construct an equivalence

\/EX, =<\?zx,)\/zx

and conversely, from such an equivalence that is compatible with the maps é and £, one
can obtain the required inverses. Thus it is clear that if @ s trivial, then £.X is a retract of

\/ ZX, and .7 is a retraction. Going the other way, assume that we have maps
IX — \/EX, — =X
such that ri is homotopic to the identity on X X. Let r,, denote the restriction of r to £X,. By

the cellular approximation thcorem we can assumc that each r, is homotopic to a self map
pa of £X, followed by the standard inclusion of XX, in £X. Then

Iy =ri~ Zf(\/p,,)i
Thus £F has a right inverse and so © is trivial by earlier remarks. O
Proof of Corollary 2.1. Assume that £X =~ \/_K,, where each K, is a finite complex.

For each « choose an embedding j,: K, - £ X, that has a left inverse. Choose them so that
n, # ng when a # 8. There is then an obvious left inverse for the composition

IX = V,K, — V,2X, < VEX,
and so the result follows. O

Proof of Corollary 2.2. The space X may not be nilpotent, but we can certainly
rationalize everything to the right of it in the cofiber sequence considered earlier,

x = (sz,) N (\72){,) — (X)), — ...



UNIVERSAL PHANTOM MAPS 379

Since X is rationally a bouquet of spheres, the map J, has a left inverse, and so the first
map O, is trivial. Since any phantom map from X to a rational space Y factors through ©,,
the result follows. ]

As mentioned earlier, this result can also be verified using a lim' argument, provided
Y has finite type over Q. In this case, the groups [ZX,, Y] will be finite dimensional
rational vector spaces, and the maps in the tower will be linear. Consequently, the
descending chain condition on vector subspaces forces the tower to be Mittag-Leffler and
so its lim" term must vanish,

Proof of Example 2.3. When there is just one factor, a classical result of I. M. James
asserts that

TQSL~S(LvLALVLALALY ")

and so if L is a finite complex, then so are all the other summands. If there is more than
one factor, use the equivalences, QX xY)=~QXxQY, and ZX(Xx1Y)=
ZXvXEYvVvZI(X AY) and induction on the number of factors to prove it for the
product. O

Proof of Example 3.1. The construction of this example begins with two homotopy
classes of essential maps, say « and f3,

Sm

8
§* ST =Es

whose orders are finite, stable, and relatively prime, and whose targets are different. In other
words, if |||l denotes the order of «, we require that ||af| = {| E"a| for all n, the same
condition for f#, and (|lz{, [#]) = 1. We also want ¢t > 0. For instance, we could take
a=a,(Ninn, 4 S*and f = E%«,(3)in m,;4S"" in this construction. We will construct a cell
complex using the following suspensions of these maps

Sm Elsm EZ:sm

s” E'S® Elen
More precisely we take the space X in this example to be the mapping cone,
X = coﬁbcr{‘{’: \/ E4s™— \/ E"‘S"}
k20 k20
where the restriction of ¥ to E¥S™ is given by
kt m v m m_*Vv g n n+1 s Jitca
EM{§™" — S" v ST ——S§"v "t} —— \/ E'S
j20

The first map here is the standard comultiplication on the sphere—the one that pinches the
equator to a point.

We have claimed that ZX has no proper finite dimensional retracts. This is easy to see in
the example mentioned earlier in which « and f are detected by primary Steenrod
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operations. We will show it is true more generally whenever « and £ are stably essential and
their orders are relatively prime. To keep the notation simple, we will deal with the space
X and prove that it is irreducible. The method however will give the same result for any
suspension of X.

By way of a contradiction, suppose that K is a finite dimensional retract of X, and that
K has dimension d, which is positive but minimal. As K is a retract, its homology is
isomorphic to a direct summand of H, X. Since each betti number of X is either 0, 1 or
possibly 2 (if m — n = — 1 modt), the same is true for K. Let us start with the case where
H,K has rank 1. Then the inclusion K — X would take the top cell of K to either a sphere
E*S" or to a cone on one of the E¥S™s or possibly to a linear combination of the two. Now
if the top cell of K is sent to a spherical class, and K is minimal, then this forces K = E¥S",
But when localized at the order of «

X ~ \/ Ekr(Snuaem*l)
k>0
and to have one of the bottom spheres in these mapping cones as a retract would imply that
E*a is nullhomotopic—a contradiction.

Next assume that the top cell of K is sent to the cone over E¥ ~'S™ where k > 1. When
localized at the order of f, this cone remains attached to the sphere EYS" by the stably
essential map E* ‘8. This means that the sphere ES" is contained in K. But it also means
that when focalized at the order of «, this same sphere is a retract of the mapping cone of
E*x—a contradiction once again.

Finally assume that the top class in H_ K is sent to a linear combination of two classes in
H,X and thus d = m + jt + 1 = n + kt. Choose generators, x and y in H; X representing
the cone and the sphere respectively. If the top class of K is sent to ix + uy, then this
clement generates a direct summand of HyX and so the coefficients 4 and p must be
relatively prime. Suppose therc is a prime p, that divides the stable order of «, but does not
divide . If such a prime exists, localize X at it. As before X, will decompose into an infinite
wedge of mapping cones for the various suspensions of a and the retraction of X to K,
restricted to the appropriate mapping cone will yield a retraction of the bottom
sphere—and a contradiction. The same argument can be used if p divides the stable order of
f and again does not divide g. The only other possibility is that the coefficient 4 is relatively
prime to the orders of a and f. If this happens we recall the argument used when the top
class of K was mapped to a nonspherical generator. It will work here too. There is one more
case to be considered; when H, K has rank 2 in its top dimension. This case is casy and is left
to the reader.

In the proof that X is a retract of \/ZX,, we will abuse notation slightly and use

a+ f to refer to the following composition,

sm o smy s 2D gy s
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Its mapping cone will be denoted C(x + ). We will construct a map

X— \/ E“C(l"‘ﬂ)

k=0

with a left inverse. From this it will follow easily that £ X is a retract of \/ ZX,. To begin the

construction, first choose integers a and b such that
allxl + bl Bl = 1.

This is possible since the orders of x and f are relatively prime. Consider next the t-fold
suspension of the composition,

E~B v f2l v 18]
smoty gm ETEN o Y gy g ol v b1 | S"v Ss"

Call this composition ®. When followed by the folding map & on §"*', one gets
F ® = (f, E'x) because the last three maps in that composition factor the identity on $"*".
When @& is composed with the projection onto the left $"**, the result is n, ® = (B, 0), while
projection onto the right sphere yields ng® = (0, E‘a). These facts are easy to verify when
f is a co-H map. So, from this point on, let us assume that it is. If : denotes the identity map
on §$"*!, the following relations in 7,8"** become evident,

b)) =0, and
(allall)p=p

since a| 2l = 1 mod || f#]. These relations are at the heart of the second and third assertions
about @. Now consider the commutative diagram,

\/ Eklsm ¥ \/ Eklsn

k20 k20

1 l l

\/ Ekrsm M \/ Ekl(sn v S'H")“———' \/ Ekt C((I +ﬁ)
k20 kz0 k20
The rows in this diagram are cofiber sequences. The vertical map on the left is the identity.

The map in the middle resticts to the identity on the bottom S but for k > 1, it sends E*S"
to a bouquet of two spheres of dimension n + k¢, via the kt-fold suspension of the
composition,

X

S" {aflall v bIBI)Y S"v S le v b E-l(sn v Sn*r) v EO(SII v Sn+l)

Therefore, a typical sphere ES™, in the upper left corner is sent to E¥(x + f) along either
route and so the left square commutes, The right-hand map is, of course, the quotient map
on the cofibers. It is clear this map is injective in homology.

The mapping cone E* C(x + ff) can be embedded in the kt + m + l-skeleton of X, by
a map that is injective in homology. The easiest way to see this is to return to the picture of
the attaching maps for X, given earlicr. To construct X, we start with the spheres, \/E*S",
and attach cells by the maps E*(x + ). These cells can be attached in any order we choose.
Attaching the cell of dimension kt + m + 1 first, we get the embedding in question.

Now suspend once and compose the two embeddings just described.

IX — \/ E¥*1Ca+ f)— \/IX,

k20
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Follow this by the folding map, #:\/Z X, — ZX. It rejoins those spherical classes split

apart by the (alz + bl 811)v-map. The three maps compose to a self equivalence of £.X, and

x

so this space is a retract of \/ £X,, as claimed. O

Proof of Proposition 3.2. One direction of this result is covered by Corollary 2.1. To
x
begin the proof in the other direction, assume that £ X is a retract of \/ £ X,. In the proof of
Theorem 2. it was shown that the inclusion j, could be chosen to be a right homotopy
inverse to the folding map, #. Thus the composition

IX 2 yix, 2 X

is homotopic to the identity on ZX.

Since the integral homology groups of £ X are finitely gencrated, one can find for any ¢,
an integer ¢ such that there is a monomorphism along the diagonal that makes the following
diagram commute

H(EX) — H(VEX,)

I (i)

He(\aa1 ZX,)

Let n: \/ZX, = \/n-1 £ X, be the projection—the left inverse to the inclusion i, in the
diagram. Choose the intcger ¢ large cnough to cnsure that the following composition
induces the identity in homology through a range of dimensions, d, above which each
H,E X is finite,

£x L. yIx, I \haTX, 2N =X

Let ¢, denote this composition. In H, (X X, Z) this map induces the identity in degrees < d
and the zero map in degrees > t. In those degrees between d and t, the homology groups of
T X are finite. Therefore some iterate of ¢, induces an idempotent on H (Z X, Z). This
follows from the observation that, given an endomorphism of a finite set, some iterate of it
must be an idempotent. In the case at hand, let us simply refer to the appropriate iterate as
¢. Take the telescope construction,

K=Te{sx 2 tx 25 2x 2 -},

whose homology realizes the image of ¢,. The inclusion of ZX in the left end of the
tclescope gives a map £X — K which is homology epimorphism. Use the suspension
co-H-structure on Z X, to form the sclf-map 1 — ¢, and let L denote the telescope of this
homology idempotent. Then add the two projections together to obtain a homology
cquivalence,

LX—KvL

and, hence a homotopy equivalence, as the three spaces ate simply connected. Notice that
the space L is d-connected and that all of its reduced homology groups are finite. This
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implies that the argument just used to split a finite dimensional retract off £ X can be used
again to do the same to L. The appropriate homology idempotent can be obtained as the
composition

L—sEX — \/EX,— i ZX, — EX — L

where t > ¢. Care should be taken here to choose the inclusion on the left and the retraction
on the right to be compatible with the self map 1 — ¢. In addition, the integer t should be
taken large enough to ensure that, in this composition of five maps, the middle three induce
the identity on £ X up through dimension ¢. Repeating this procedure over and over, and
then taking limits, it follows that

X ~ VK,
where each summand K, is a finite complex. g

Proof of Theorem 3.3. In this proof, the space £ X will be assumed to be p-local, but the
notation will not be burdened with this assumption. Reduced integral homology will be
used throughout. The initial goal of the proof is to split Z.X into two pieces, say

ZX =>KvlLl

where K is finite dimensional and the connectivity of L is strictly greater than that of £ X.
To this end, we can assume, without any real loss of generality, that the first nonzero
homology group of £ X occurs in degree 2. By hypothesis, there is an inclusion

T EX— \/ZIX,

that is a right inverse to the folding map #: \/ZX, — ZX. Since H,Z X is a finitely
generated Z, ,-module, its image under j, is contained in a finitely gencrated summand, say

HZ< \V zx") < H2<OXX,)

1<nst

Let ¢: £X — XX be the following composition, just as in the proof of 3.2.

 x L. \zx, 2\ zx, 2. zx
lgsnst
Note that in homology ¢ induces the identity in degree 2 and the zero map in degrees
greater than t. If ¢ induces a pseudoprojection—that is, a homomorphism h such that
image(h) = image(h*}—in all remaining degrees as well, then we will use it to form the

telescope

® ¢

Tel{Z X X rx -2

-}

whose homology rcalizes the image of ¢,. This telescope will have finite dimensional
homology. It will be our K. The telescope corresponding to 1 — ¢ will be L. The initial
splitting will have been achieved.

Il ¢ does not induce a pseudoprojection in some degree d, where 2 < d < ¢, then there is
work to be done. We will follow Wilkerson, [25]. in obtaining the desired pseudoprojection.
However, since his results pertain to finite dimensional spaces, a few changes are needed for
our purposes.
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Let H = H_, X X, let T denote the torsion subgroup of H, and let V' = H/T. Since V has
finite rank. we can assume that if r > 0 is given, then some iterate of ¢ will induce an
idempotent on the finite set, ¥'® Z/p”. Wilkerson proves the following algebraic fact in
Step 1 of his Theorem 3.3: if B is an endomorphism of V that induces an idempotent on
V® Z/p’, then there exists a pseudoprojection B’ on V, such that

B'=B+p A.

We will combine this fact with the following result—the analogue of Wilkerson’s
Theorem 3.2

LemMa 3.3.1. There is an integer r > O, such that if A is any endomorphism of the graded
Z,ymodule V, then p" A is realizable by a self-map of £ X. Moreover this self-map can be taken
to induce the zero map in degrees greater than t. a

Assume for the moment that this lemma is true. Take r large enough to satisfy the
condition in the lemma, take B = ¢, /torsion, and let a: £X — I X be the map that realizes
p"A on V. Use the suspension co-H-structure on £ X to form the sum,

V=¢+a:ZX — IX

Then on H, X X, the self-map ¢ induces the identity in degree 2, the zero map in degrecs
greater than ¢, and a pseudoprojection on V.

We claim that some iterate of ¢ induces a pseudoprojection on H, and hence on all of
H,Z X. To simplify the notation in the proof of this claim, let fdenote the endomorphism of
H induced by . Since the torsion subgroup T is finite, it is clear that the nested sequence of
subgroups {T n image(f")} eventually stabilizes. Thus for n sufficiently large,

Trimage (f") = T ~image (f*")

Now if finduces a pseudoprojection on V, then so does f". This means that for any element
yeH,

[ =700 + 2

for some x€ H, and ze T. This equation implies that z is in the image of f*, and hence in
image(f "), when n is sufficiently large. In this case, the claim

image(f") = image(f3"), on H
follows.
We have shown that y", for n sufficiently large, induces a pseudoprojection on H, Z X.
As indicated earlier, we then use the telescope construction to obtain a splitting

EX ~KvL

where the homology of K realizes the image ol ¢, , and H,, L realizes the image of (1 — §"),.
The rest of the proof proceeds very much like the proof of Proposition 3.2; we next split
a finite dimensional retract off L, using a new seif map of £ X—one that is homotopic to the
identity up through dimension ¢ and that induces the zero map in homology in degrees
greater than some 1. In the end, we take the direct limit of these splittings to obtain

ZX >~ /K,

where each K, is finite dimensional. To finish the proof of this theorem, we need only to
verify the lemma that we used.
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Proof of Lemma 3.3.1. Choose an integer t large enough that the composition

EX —a \/EX, =\ EX, - EX,
1snst
induces the identity on H. Here we have used the inclusion X, — Z X to identify the
homology of the two spaces in degrees < t. Now Z X, has the rational homotopy type of
a finite bouquet of spheres; let W denote the subbouquet consisting of those spheres of
dimension < t. Since Z X is a finite co-H-space, Wilkerson’s Theorem 3.2 shows that there
is an integer r, and maps

ZX, - W » W ZX\'

whose composition realizes the endomorphism p’4 on V. So take the composition
ZX - I X, mentioned first, follow it by this one, and then compose that by the inclusion
X, — ZX. This is the required map. a

Corollary 3.5. This follows easily from Theorem 3.3. g

Proof of Example 3.6. If G is a finite group, let p be a prime that divides its order. If G is
not discrete, it will have a maximal torus and so in this case p could denote any prime. Next
let N denote the ideal of nilpotent elcments in H*(BG, Z/p). Thus ue N if and only if u" = 0
for some positive integer n. A theorem of Quillen asserts that Krull dimension of the
commutative Z/p algebra H*(BG, Z/p)/N cquals the maximum rank of an elementary
abelian p-subgroup of G, [20]. In particular, this dimension is at lcast onc and so therc is at
least one class ue H*(BG, Z/p), of positive degree, with u® # 0 for all positive integers n. It
follows that the oribit of u under the action of the Steenrod algebra is an infinite set. Thus
ﬁb, contains a stable retract that is infinite dimensional and atomic. The example now
follows from Corollary 3.5. A final remark: if G is a finite group, then the Segal conjec-
turc—or rather its confirmation—shows that every proper stable retract of BG is infinite
dimensional. a

Example 3.7. Given that QG is stably atomic, the rest follows easily. ]

Proof of Example 3.8. Let G denote the localization at p =2, of SU(3). By way of
a contradiction, assume by Theorem 2 that there is an inclusion,

j: QG — \/Z(Q06),

which is a right inverse to the folding map & . Use these maps, along with the projections
within the bouquet, to construct a map
¢ ZQG — Z(QG), — ZQG
that induces a homology isomorphism in degree 3. We did this once before in the proof of
Theorem 3.3. Now apply the loop functor to this map and consider the next composition
QG -5 QE(06) 2. 03(06) —— QG

where E, is the suspension map and the last map r is a retraction—a left inverse for E. This
composition induces a homology isomorphism in degree 2. It can be rewritten as follows

QG — QX((QG),) — QG.
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Now QG is atomic, according to Hubbuck, [11], Theorem 1.1, and so this composition
must be an equivalence. In particular, the first map induces a monomorphism in mod
2 homology—one that commutes with the the Steenrod algebra, acting on the homology of
both spaces. However, the next result shows no such map exists.

ProrosiTioN 38.1. It is not possible, for any integer t, to embed H,(QG;Z/2) in
H, (QZ((QG),); Z/2). as an unstable module over the Steenrod algebra. G

There is a standard way to put an «&/,-module structure on the mod-2 homology of
a space X of finite type. One starts with the natural isomorphism,

HY(X:Z/2) —— Hom(H,(X;Z/2).Z/2)

from the universal coefficient theorem, [22], then applies Hom(, Z/2) to both sides, and
then invokes the natural isomorphism between V and V** when V is a finite dimensional
vector space. This has been done in the proof that follows, although the notation will not
reflect this. We will use S¢' to denote that which might more precisely be described as (Sg')*
or Hom(Sq', Z,/2).

To simplify notation further, let H denote H,(QSU(3); Z/2). Then, as an algebra over
the Steenrod algebra,

H=1Z/2[x,y]

where x has degree 2, and y has degree 4, and Sq*(y) = x. This and the Cartan formula
completely determine the action of the Steenrod algebra on H. Let T(k) denote
H, (QZ{QG)): Z/2); it is isomorphic to the tensor algebra,

T(k) = T(H,(QG): Z/2).

The action of ./, on T, is completely determined by its action on the k-skeleton of
H and the Cartan formula. Given a monomial ze H, of degree < k, we will let [z] denote
the corresponding algebra generator in T'(k). Thus a typical element in T(k) may be
expressed as a sum of monomials of the form

[x®yh 02 y®] .. [x*eyPe]

It suffices to show that there is no embedding of H into T(2"), as unstable modules over
& ,, for any integer n. By way of a contradiction, assume that such an embedding does exist;
take n to be minimal and let N = 2"~Y, There is an important relation in H,

v
wony _ yx0 i k=2N
Saly )‘{o if k#2N and k>0

which can be verified using the Cartan formula and induction on n. This relation implies
that an embedding of H into T(2") must take y® to a class, say z, for which Sg¥(z) # 0 while
Sq*(z) = 0, for all positive k < 2N. We will show that there is no such class z, of degree 4N,
with these properties in T(2").

We first claim that if z is a monomial of degree 4N in T(2"), then Sq*¥(z) = 0 if and only
if x divides z (more precisely, iff some [x?y®] divides z, where a > 0). To prove this claim,
suppose first that x does not divide z. Then z has the form,

=y 30y0] ... [y“] where k, + k; + ... + k,=N.
The Cartan formula and the relation just mentioned implies that

Sq*¥ @) = [x"J[x*] ... [x*]
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which is certainly nonzero. Next suppose that z is a divisible by x; say
z = [x"y?Ju, where a >0, and b > 0.

The largest k for which Sq*([x°y®]) # 0 is 2b. But since 4N — 4b > 4N — (2a + 4b) =
degree (u) it follows that Sq2¥~2%(u) = 0, by the unstable axiom, and hence Sq*¥(z) = 0, by
the Cartan formula. This case was admittedly special, but it is clear that the general case
follows for the same simple reasons. Our claim thus established, it follows that an embed-
ding of H into T(2") must take y" to a nonzero linear combination of monomials in [y],
(%], ..., [¥¥?], plus possibly, an “error term™ u on which Sq?¥(u) = 0.

LemMa 3.8.2. Let S(4N) denote the set of nonzero monomials in [y],[y*], .. .. [yV?1, of
degree AN, in T(2"). Then,

(a) for each monomial z in S(4N), there is a k between | and N/2 such that Sq**(z) # 0.

(b) Suppose z=13Xz; where each z;€S(N) and each Sq**(z;)#0. Then
Sq¢*(z)=0=:=0.

(c) Assume z = E:z; where each z;€ S(4N) and that u is the error term mentioned earlier.
Then Sq**(z + u) = 0 = Sq*(z) = 0.

It is clear that this lemma yields the contradiction we seek. Combined with the claim
established earlier, it shows that the Steenrod algebra actions on H, and on T(2"), are
sufficiently different that no embedding, over &/, of the first into the second is possible. In
retrospect, this is perhaps not surprising, in view of the commutativity in H, which allows
many terms to cancel out, and the noncommutative nature of 7(2"), which prevents this.

Proof of 3.8.2. For part (a), take a typical monomial, say
=010 D]
in S@N) and let k = max{k,, k,,..., k,}. Then
S¢*¢)= Y [y*]...[x*]...[y*] + other terms

kymk
These other terms could be nonzero only if k equals a sum of smaller k/’s. In this case there
will be two or more of the [ x* J-factors appearing in each of the “other terms™. They will be
lincarly independent of those displayed above.

For the proof of part (b), notice that there is a simple method for recovering a z;€ S(4N)
from a nonzero Sq2*(z;): when the latter is expressed as a sum of monomials in the [x*]'s
and [y*]’s, simply take any one of the monomials and replace each occurrence of x in it
by y. Part (b) follows easily from this observation.

In part (c), recall that x for some a > 1, divides the error term, u, whereas x does not
divide any member of S(4N). It follows then, that k is the highest power of x that divides
Sq%*(z) whereas x**¢ divides Sq2*(u). The two values of Sq%* must then be linearly
independent in 7(2") and so part (c) follows. a

Proof of Example 3.9. At the prime 2, the space X is equivalent to a bouquet of spheres,
while at an odd prime [, X is equivalent to

(g ()

Hence the universal phantom map out of X is trivial at each prime by Theorem 3.3.

TO0P 32:2-K
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Suspend once and consider phantom maps into $* using the isomorphism of abelian
groups,

PR(ZX,§%) = lim'[£%X,(S*)"].

Let 4, = [ZIX. (S3)™]. Notice that A = Z and that for larger n, A, * Z ® F, where F, is
a finite abelian group. This follows by rationalizing the spaces and groups involved. The
quotient map 4, — A,/torsion, is known to induce a lir_n1 tsomorphism, [13], and so we can
disregard the torsion summand. Any map

SSU’IeZH*Zi Si

must induce in Hs( ; Z) a homomorphism whose degree is divisible by . It follows that the
image of A, in 45 has finite index divisible by all primes [ with 2] + 3 < n. The tower {4, } is
therefore not Mittag-Leffler and so, by Theorem 2 of [16], its li‘_ml term is nonzero. Hence
essential phantom maps exist between £ X and S*. Obviously this argument adapts to
higher suspensions of X with the same conclusion. The stable nontriviality of © follows
casily. (]

Proof of Example 4.1. We are going to prove something slightly stronger than the result
stated. Let ©(X, Y) denote the set of pointed homotopy classes of maps from X to Y whose
restriction to each finite subcomplex of X is null homotopic. It is clear that
Ph(X, Y)< O(X, Y). Of course, the two scts arc equal when X has finite type, but in
general, they are not equal, [7]. We will show that (X, Y) = 0 when X and Y satisfy the
conditions of Example 4.1. Our proof requires three lemmas. The first one is a general fact
and some special cases of it arc implicit in the litcrature.

Lemma 4.1.1. Let X be a pointed CW-complex and let Y be a pointed space. Let {X,}
denote the directed system of all pointed finite subcomplexes of X. Then, as pointed sets,

li_r_n‘[ZX,, Y] = ©(X,Y) a

When X has finite type, the direct system mentioned here can be replaced by the cofinal
scquence of skeleta and one can appeal to [2], page 256, for this result. When the target Yis
nilpotent and of finite type this first lemma is a consequence of [23], Theorem 3.3.

Recall that an inverse system of groups {G,} over a directed sct, is said to satisfy the
Mittag-Leffler condition if for each «, there is a § > a, such that

image{G, « Gg} = image {G, + G,}

for all y = f. The next result is well known and well documented in the special case of
inverse sequences of groups, e.g., [2], [15]). It is probably well known in the generality we
require—for groups which are not necessarily abelian, indexed by directed sets which are
not necessarily countable—but we were unable to find it in the literature.

Lemma 4.1.2. Let {G,} be an inverse system of groups, indexed by a directed set. If this
system satisfies the Mittag-Leffler condition, then lir_nl G, =». O

LemMa 4.1.3. Let X and Y satisfy the conditions of Example 4.1. For each finite
subcomplex X, of X, there is another finite subcomplex, X4, which contains it and for which
the image of the restriction map,

iy

is a finite subgroup. 0
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This third lemma clearly implies that the system {[ZX,, Y]} is Mittag~Leffler and so
Example 4.1 follows from the previous two lemmas. We now give their proofs.

Proof of 4.1.1. First., a note about basepoints: all maps considered in this proof preserve
basepoints and all homotopies fix these basepoints. The cones, suspensions, and similar
constructions we use here will be reduced, and thus will also have basepoints.

Given a phantom map, f: X — Y, choose for each finite subcomplex X,, a null
homotopy of the restriction f| X, and use it to define an extension of /| X, to the cone
f,: CX,— Y. If X is another finite subcomplex that contains X,, define a map

f31CX, on the upper cone

Fyp:ZX,— Yto be {L on the lower cone

Of course, this collection of maps {F,s} is not uniquely determined by f; it depends on
a choice, for each a, of null homotopy used in deﬁningf;. These choices, up to homotopy,
are in one to one correspondence with [ X X, Y ]. Fortunately, this problem disappears in
Ii*r_nl [ZX,. Y] Recall how it is defined: for each « < §, let G, = G, =[ZX,, Y] and let
itg: G, « Gy be induced by restriction. The set of cocycles, Z(G,), is then defined as

Z2(G,) = {:,,,e ﬂ G,,,Iz,,,-i:,,(z,,) = z,,, whenever « < f < y}

ash

The maps F,, are casily scen to satisfy this cocycle condition. Now dcfine a right action
Z(Ga) x n Ga - Z(Ga)
by

b zep7ing(gp))

(z2)"(gy) = (9«
The orbit space of this action is lir_n‘G,. From this description, it follows that the
correspondence

Fo)

o, v) 5 lim [zx,. 1]

is well defined. Indeed, if one uses different extensions, say {fa + g,} to create a sccond
family, { F., }, then it follows that (F,z)*(g,) = (F44). To obtain an inverse correspondence,
we will use a slightly different universal phantom map out of X,

x =, \/zx,
a<p 4
where X,5 = X,. To define this, we first replace the telescope of skeletons, Tel(X), by
a similar construction, J (X ), which is also homotopy equivalent to X. From a distance,
7 (X ) resembiles a tree; up close, one sees that each branch of it is a telescope. To be more
precise, we will construct 7 (X)) as a direct limit,

J(X) = lim T(X,)
where X, runs through all finite subcomplexes of X. First we describe T(K) where K is
a finite complex. Let K, K,. ..., K, be the list of all proper subcomplexes of K with those
that arc maximal in K listed before those which are not. The first stage in the construction of
T(K) is to take the mapping cylinder of each inclusion, K; — K, and then glue all of them
together along K. In other words, take

( L K,.x1>]_[1<

1gign
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and in each K; x I, identify the points (x, 1) with x in K. Call the result T, (K). The next step
is to repeat this process on just the maximal subcomplexes, say K, and K, of K. Having
done this, identify the t = 1 end of T (K ;) with K, x {0} in T, (K). Likewise, the t = 1 end
of T, (K,) gets identified with K, x {0} in T, (K). This completes the construction of the
second stage, T,(K). The third stage of the construction involves only the maximal
subcomplexes of K, and K, to which this process would be repeated. Continue in this
manner as many times as are necessary; call the end result T(K). This construction requires
as many stages as the maximum length of any chain in the lattice of subcomplexes of K. The
similarity between T7(K) and a tree should be clear. Each branch corresponds to a strictly
decreasing sequence of subcomplexes that starts with K; each successor, with the possible
exception of the last one, is maximal in its immediate predecessor. This correspondence is
bijective. So, if L is a subcomplex of K, it is clear that T(L) can be identified with a subtree of
T(K), but not necessarily in a unique way (L could be maximal in more than one complex).
We are forced to make choices. For each finite subcomplex K of X, choose another finite
subcomplex K’, in which it is maximal. Do this in such a way that the choices compose to
form a directed system of inclusions. To put it another way, choose a maximal tree in the
Hasse diagram of the lattice of finite subcomplexes of X. Then use the induced inclusion of
T(L) in T(K), whenever L < K, to construct .7 (X)) as the topological direct limit of the
T(X,)s. There is an obvious map J (X) — X. [t is the direct limit of homotopy equivalences
T(K)— K. As such, it is easily sccn to be a homotopy equivalence.

The universal phantom map is then defined as the quotient map from .7 (X) to the
bouquet \/ ZX,,. that sends to the basepoint all points in 7 (X ) whose second coordinates

a<p
were once integers. Moreover, for each 2 < ff, the mapping cylinders of X, € Xyin .7 (X), of
which there are many, get sent to the lone £X,,.
Given any family of maps {h,5: ZX, = Y }, <4 it is clear that by composing \/ h,, with
a<f
O one gets a phantom map from X to Y. Morcover, if the two familics satisfy the cocycle

condition and represent the same class in li'r_nl G,, then composing them with © will yield
the same phantom map.
Thus we have a function

lim!' [£X, Y] —— O(X, ¥)

We claim that ©* is an inversc to the function defined earlier. To sce this, take a phantom
map f: X — Y and for cach x choosc a null homotopy, N, of f{ X,. Then compose f with the
projection m: 7 (X)) — X. Use the N,’s to construct a homotopy, H,, from fr to a map that
factors through the bouquet \/ T X,;. On a typical mapping cylinder of X, = Xzin 7 (X),

a<f

this homotopy is given by the formula

No(x.s(1=21) if0<t<1/2
H(x, 1) = .
Nglo,s(2t=1)) il 12<t1 <
The t = 0 end of this homotopy is f(x), while the ¢t = | end has the form @“( V F,,,). The
21<B
claim follows. Composing these two functions in the opposite order induces the identity on
Iir_n' [Z£X,. Y ]—as the reader can easily verify. O

Proof of 4.1.2. Notice that lir_nl G, = ~ if and only if for cach cocycle family {z,4}, there
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exists a family {g,} €[]G, such that

9: = 215" f15(ds)

foreach x < B. If all the structure maps f, are surjective, then one can obtain such g,’s. First
use this surjectivity and Zorn's lemma to define the g,’s for a maximal chain of ys. Then for
any x off the chain choose a larger f on the chain and define let g, = f,;(g,). It is
straightforward to check that this works.

If all the f;4's are surjective then, obviously, the system {G, } satisfies the Mittag-Leffler
condition. Conversely if {G, } satisfies the Mittag—Leffler condition, then in the category of
pro-groups, it is isomorphic to another progroup {G;} whose structure maps { 5} are all
epimorphisms, [15], page 167. Since Iir_nl is a functor from the category of pro-groups to
that of sets, ibid. p. 177, the lemma follows.

Proof of 4.1.3. Given X,, we will choose X, to be a slightly bigger, but still finite
subcomplex of X, such that the image of

Hy(X43Z)— H,\ (X5, Z)

is finite for each n > 1. Of course, if H,(X,;Z) is finite for all n > 0, we will take Xs=X,.
Otherwise, let d denote the highest dimension in which the integral homology of X, fails to
be finite. Consider the long exact sequence for the pair (X, X,),

e

— M, (X, X,) H,X, H,X

The kernel of i, is finitely generated and the relative group is generated by the cells in
X — X, of dimension d + 1. Therefore, take a minimal collection of (d + 1)-cells that, in
homology, map onto the kernel of i, , and let K¢ be the smallest subcomplex that contains
them and X,. In homology, the image induced by the inclusion X, —» K9 is evidently finite
in degrees < d. Now consider H,.,K‘ if it is not finite, kill off the kernel of
H,_ K% H,_, X, thereby creating K“~'. Continuing in this manner, we get a sequence of
inclusions

1Y,——’Kd_’K,1_l‘_’ P ‘_"K1=Xﬂ

such that for each degree n > 1, one of these maps (and hence the composition of all of them)
induces a finite image in /,,.

In cohomology with cocfficients in a finitely generated abelian group, 4, one sces that
the restriction

H'(X 3 A) —— H"(X,: A)
also has a finite image. If QY denotes the n-th stage of the Postnikov system for QY it
follows that the image of
[X..Qr™] < [X, Qy©]
is likewise finite. Here one uses the principal fibrations
K(n,n) — QY™ — Qyt-1

induction on n, and the finite type hypothesis on Y to verify this. Finally, by taking
n sufficiently large one has the first of two isomorphisms

[X;.QY™] ~ [X,,QY] = [EX,, Y]

and the result follows. ]
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Proof of Example 4.2. Each member of Toda’s a-family on S has order p, is stably
essential, and is stably indecomposable. It follows that the mapping cone, X, is stably
irreducible at p. Thus by Theorem 3.3, the universal phantom map of X is essential—stably
essential, in fact.

It is a simple exercise to construct maps

X f \/ §2tp=1)+3 S, x
t20
where the map f has degree 1 on the bottom 3-sphere, and degree p on each of the higher
cells, and the composite gf, induces multiplication by p on the reduced homology of X. The
rest, of course, follows from Theorem 4.3, which is proved next. a

Proof of Theorem 4.3. Let Y be a target of finite type and let
G.=[X.,Qr"]

We will identify Ph(X, Y) with “J_“l G,. The goal then, is to show that the tower {G,} is
Mittag-Leffler. The following two properties of this tower will be used in the proof:

(i) each G, is a finitely generated nilpotent group, and
(i) the image of G, ., in G, has finite index for each n.

This first property follows since both X and Y have finite type, [24], Chapter 10. The
sccond property can be verified by applying the functor [ X, ] to the principal fibration

axev X, gxm _~, K n

Since the k-invariant is rationally trivial, the image of k, must be finite, and so its kerncl
must have finite index. The second property then follows by exactness.

Each G, is a countable group by (i). According to Lemma 3.2 of [16], a tower of
countable groups satisfying property (ii) is Mittag-Leffler if and only if the canonical map
lir_n G, — G, has a finite cokernel (i.e., its image has finite index in the target) for each n.
There is an epimorphism

[X,QY]———»Ii_mG,,

by [23], Theorem 3.3a, and thus our tower is Mittag-Leffler if and only if the restriction
map [X, QY] - G, has a finite cokernel for each n. Of course, the same remarks apply to
the tower {[Z, QY ™]}. With this in mind, consider the commutative diagram

[x,QY] A [v,Qvr]
! !
(x.arm] 2 [z.arm

It is induced by restriction in the vertical direction and by the map f: X — Z, in the
horizontal direction. The assumption is that Ph(Z, Y ) = 0. Hence the cokernel of the right
side is finite. Assume for the moment, that the same is true of the map along the bottom.
Going around the other way, it follows that the left side must also have a finite cokernel. We
conclude, by earlicr remarks, that Ph(X, Y ) = 0.

To finish the proof, we nced to show that the homomorphism along the base has a finite
cokernel. Since the map fis a rational homology equivalence, it follows that it also induces
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an isomorphism on the rationalization of the bottom edge. Therefore it suffices to establish
the following.

Lemma 43.1. Let ¢: G — H be a homomorphism between two finitely generated nilpotent
groups. If the rationalization, ¢q: Go — Hy, is an isomorphism, then the image @(G) has finite
index in H.

Proof. When the groups involved are abelian, this basic. For the general case, use the
lower central series and the commutative diagram

r — G —-— GG

l el l
Iy ~ H » H/T'H

All three vertical maps in this diagram are rational equivalences if the middle one is, by [9],
Theorems 6.5 and 6.6. Since the index of ¢ equals the product of the indexes of the other two
verticals, the result follows by induction on the maximum of nilpotency classes; nil(G) and
nil(H). 0

Corollary 4.4. This is a direct consequence of the theorem. 0

Proof of Corollary 4.5. Assume that K is not rationally trivial. Being a finitc H,-space, it
follows that it must have the rational homotopy type of a tinite product of odd dimensional
spheres, say P. One can find maps going both ways that induce this rational equivalence,

¢ Y

K— P — K

Here the maps ¢ and y can be taken to be rational equivalences such that ¢y and y¢ both
induce multiplication by some nonzero integer 4, on the rational homotopy groups of K.
For a proof of this, sce [ 16], Proposition 5.1. Thus the map fin Theorem 4.3 can be taken to
be a loop map in this special case. The corollary follows. O

Corollary 4.6. This is an immediate consequence of the previous corollary and the cited
work of Roitberg. ' O

Proof of Example 4.7. For each prime p, and each n 2 1, there is a rational equivalence

Qg+t " S(z:)-x
For n > 2, the degree of this map on the bottom cell must be at least p. These facts are some
deep results of Cohen, Moore, and Neisendorfer. For a proof of these assertions see Cohen
[4]-p. 558, for p = 2, see Neisendorfer [19]-p. 71, for p = 3, and see [5] for p > 5. Going in
the other direction, there is, of course, the double suspension E2; §2"~' — Q282"*! which
exists without localizing and is a rational equivalence. It then follows, by Theorem 4.3, that

Ph(QZSZ"* l, Y(,,,) =0

for every Y, with finite type over Z,,,.
The existence of an essential phantom map from Q2S° to HP ~ is a consequence of the
loop space structure on S* as well as the nonexistence of global representatives for the maps
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n,, above. Notice that

N

PR(Q*S%, HP*) x lim' [QS*, (QHP=)"] x lim' [Q5%, (%]

ow for each n > 3, let
Gn = [0285, (53)0-)]

As in 3.9, a rational calculation shows G, * Z ® T, where T, is a finite abelian group. The

results of Cohen, Moore and Neisendorfer. imply that modulo torsion, the index of the

image of G,., in G, becomes divisible by more and more primes as k increases. The

assertion that ligl‘ G, # 0 then follows, just as it did in Example 3.9. O
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