Presentation topics, Algebraic topology, Math 4152/9052, Fall 2011
Each student will give one presentation near the end of the course.
All presentations will be done using the blackboard.
All students are expected to attend all presentations and to arrive on time.
Possible Topics:
These are suggestions, but you can also propose other topics.
Topics need to be discussed with me and approved.
When you meet with me, I can give more information about
the topics and can suggest further references.
I will encourage the graduate students to choose slightly more
challenging topics.
- Applications of homology, Hatcher 2.B. Jordan curve
theorem, Alexander horned sphere, invariance of domain,
division algebras.
- Applications of homology, Hatcher 2.B. Borsuk-Ulam
and the transfer sequence.
(There's also a book, Using the Borsuk-Ulam Theorem,
by Jiri Matousek.)
- Introduction to cohomology, Hatcher Ch 3. Universal
coefficient theorem, ring structure (cup product).
- K(G,1) spaces, Hatcher 1.B.
- Hurewicz Thm, Hatcher 2.A and p. 366-?.
Sketch proof of 2A.1, several examples, statement of 4.32,
partial converse, more examples.
- Vector fields and Euler characteristic. See, for example,
these notes.
- The Lefschetz fixed-point theorem, Hatcher 2C.3. Proof
relies on simplicial approximation, so may need to cover
that as well.
- Long exact sequence of homotopy groups for a fibration,
Hatcher p.375-?. Define fibration, state result,
sketch proof, give examples.
Can give a direct proof instead of using relative homotopy groups.
- The fundamental groupoid. E.g. 1971 book by Higgins, Categories
and groupoids, QA171.H57, and 2006 book by Brown, Topology and groupoids.
See also online notes by Baez.
Could discuss the generalized van Kampen theorem.
- Classification of surfaces, Massey, GTM 127, Ch 1.
(A lot of material, but can be surveyed.)
- Brown representability for generalized cohomology.
Hatcher 4.E, but there are probably better sources too.
Connections to K(G,1)'s.
- Vector bundles, universal bundles and Grassmanians,
e.g. from the first chapter of Hatcher's book on
Vector Bundles & K-Theory.
- K-theory as a generalized cohomology theory.
- Introduction to knot theory, e.g. Alexander/Conway polynomial,
Jones/HOMFLY polynomial, etc. Kauffman, On Knots;
Carlson, Topology of Surfaces, Knots and Manifolds.
- Applications of covering spaces to other topics, such
as complex analysis.
- Introduction to group (co)homology, i.e. (co)homology of K(G,1).
Duration:
45-55 minutes for grad students, 40-50 for undergrads.
The presentations are not long, so you will need to carefully
select the appropriate amount of material to present.
Grading:
The presentations will be worth 1/3 of the overall mark in the course.
They will be graded on:
- knowledge of material. Be prepared to answer questions.
- organization of material: what you choose to cover, and how
you choose to organize it. Don't forget to include motivating
examples, history (e.g. attributions and years), and context.
- clarity and style of presentation: speaking clearly, looking
at audience, giving clear explanations, etc.
- blackboard use: use boards in order, don't erase what you've
just written, don't stand in front of what you've written,
use coloured chalk when appropriate, etc.
- duration: if you end within the time span given, you get full
marks for this category; otherwise, you lose marks. You might
want to build some flexibility into the end of your presentation
so you can adjust on the fly.
Note that knowledge of material is just a small part of the grade.
The presentation itself is much more important. Because of this, you
should practice the talk at least once or twice beforehand, on
a blackboard, with someone listening, and you should time how long
it takes. This is extremely important. You should also address
your presentation to your fellow students, not to me; students in the audience
are strongly encouraged to ask questions during and after the talk.
Timeline:
- In mid-October, look over topics and read about a couple of them.
- Meet with me by Nov 4 to discuss topics and
select a date.
- Finalize choice of your topic ≥ 3 weeks ahead of your date.
- Give me an outline (1 to 2 pages) ≥ 2 weeks ahead of
your date.
- Give me a draft of the whole talk ≥ 1 week ahead of your date.
Indicate which parts you will say and which parts you will write on the board.
M4152/M9052 home page.