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Vector Fields
A vector field V on a domain D of the plane is a function V (P ) associ-
ating to every point P ∈ D a vector V (P ). Intuitively one can think of
V as the velocity of some substance (for example, water) moving inside
D. Placement of the vector V (P ) with its tail at P helps to visualize the
vector field. For practical purposes it is usually more convenient to place
all vectors with their tails at the origin. Then V (P ) may be described by
the coordinates of its head:

V (P ) = (F (x, y), G(x, y)), (1)

where F and G are functions of P = (x, y). The vector field V is called
continuous when the functions F and G in (1) are continuous.

Vector fields have many important applications. The force fields aris-
ing from gravitation and electromagnetism are vector fields; the velocity
vectors of a fluid motion, such as the atmosphere (wind vectors), form
a vector field; and gradients, such as the pressure gradient on a weather
map or the height gradient of a relief chart, are vector fields.

Vector fields are closely connected with differential equations. A vec-
tor field (1) can be interpreted as a system of differential equations

{

dx/dt = F (x, y)

dy/dt = G(x, y)

A solution (x(t), y(t)) can be considered as the parametric representa-
tion of a directed path in the plane. The original vector field V (P ) gives
the tangent vectors to the path at the point P = (x, y). These directed
paths with their tangent vectors defined by V form a phase portrait
of the vector field. The paths are called integral paths, trajectories,
orbits, or flows. The picture formed by the paths is called the phase
portrait of the system of differential equations.

Critical points. It turns out that topological organization of the phase
portrait is determined by the exceptional points P , called critical points,
where V (P ) = 0.

At the figure below there are four critical points. At the top there
is a center characterized by the closed trajectories that swirl around it.
No path passes through the center. At the bottom there are two critical
points called nodes characterized by the fact that all the integral paths
near these points end there. The difference between the two nodes can
be expressed by saying that one is stable and the other one is unstable. In
general, a critical point is called stable if one can find a cell surrounding
the point from which no integral paths exit. The center is also a stable
critical point. In between the center and the nodes there is a saddle
where exactly four integral paths meet, two beginning and two ending.
The saddle is unstable.
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The most important characteristics of the phase portrait are the num-
ber and arrangement of the critical points, the pattern of the integral
paths about each point, and stability or instability of the critical points.

Example: Simple Pendulum with Friction

Consider a simple pendulum oscillating in air. The frictional force is due
to air resistance. It is directed in the opposite direction of the velocity of
the pendulum v, proportional to the absolute value of the velocity and
given by −kv.
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Motion of the pendulum with friction is described by the following
second-order differential equation

ml
d2ϕ

dt2
= −mg sin ϕ − kl

dϕ

dt
, (2)

where m is the mass, l is the length of the pendulum, g is the gravitation
acceleration.

For certain m, l, and k equation (2) takes the form

d2ϕ

dt2
= − sin ϕ − 0.2

dϕ

dt

Denote ϕ(t) by x(t) and dϕ(t)/dt by y(t). Then we arrive at the fol-
lowing system of two first-order differential equations:

dx/dt = y

dy/dt = − sin x − 0.2y

}

(3)

The phase portrait of the system is exposed below.
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Winding Number and Index

Consider a continuous vector field V and a closed curve γ. Suppose
that there are no critical points of V on γ. Let us move a point P along
the curve in the counterclockwise direction. The vector V (P ) will ro-
tate during the motion. When P returns to its starting place after one
revolution along the curve, V (P ) also returns to its original position.
During the journey V (P ) will make some whole number of revolutions.
Counting these revolutions positively if they are counterclockwise, neg-
atively if they are clockwise, the resulting algebraic sum of the number
of revolutions is called the winding number of V on γ.

Theorem 1 Under a continuous deformation of a closed curve and a
vector field the winding number does not change as long as the curve
does not pass through a critical point of the field.

Indeed, the direction of a vector of the filed varies continuously out-
side the critical points. Therefore the number of revolutions also varies
continuously with the curve or with a continuous deformation of the
field. Being an integer, it must be constant.

Theorem 2 If the winding number of a curve is nonzero, then there is
at least one critical point inside the domain bounded by the curve.

The index of an isolated critical point of a vector field is the winding
number of a small counterclockwise oriented circle with center at that
point.
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Figure 1: Index of a critical point.

Figure 2: Critical points. Compute their indices.

Theorem 3 Consider a curve and a vector field having no critical
points on the curve. The winding number of the curve equals the sum
of the indices of the critical points lying inside the domain bounded by
the curve.

Figure 3: Proof of Theorem 3.

Theorem 4 The winding number of a closed integral path of a vector
field equals one.

Tangent Vector Fields on Surfaces
Consider a smooth closed surface. Let each point of the surface be
equipped with a vector tangent to the surface at that point. If the vectors
depend continuously on the points where their tails are attached, we will
say about (continuous) tangent vector field on the surface. Note that
the definitions of critical points, winding numbers and indices can be
trivially extended on for a tangent vector filed on a smooth surface.

Theorem 5 (Poincare) Let V be a tangent vector field on a smooth
closed oriented surface S with only isolated critical points P1, P2, . . . ,
Pn. Then the sum of indices of the critical points equals the Euler char-
acteristic of the surface:

n
∑

i=1

ind
V

(Pi) = χ(S).

Contours for Topography Visualizing
Imagine that a smooth function z = f(x, y) is the height function of a
mountainous island. The island topography can be usefully visualized
in terms of the contours, the level sets

{(x, y) : f(x, y) = const} .

These contours (or in practice a suitable selection of them) convey in-
formation about the surface of the island.

Figure 4: Top: proof of the Poincare theorem for a sphere. Bottom:
proof of the Poincare theorem for a torus.

The contour lines are the integral paths for the vector field

V (x, y) = (∂f/∂y,−∂f/∂x)

and, therefore, are the solutions of the system differential equations
{

dx/dt = ∂f/∂y,
dy/dt = −∂f/∂x.

Note that the critical points of f(x, y) are the critical points of the sys-
tem. Moreover, the maxima and minima are centers and the saddles are
saddles.

A topographical map is a set of contours of a height function used
for visualization purposes.

The Reeb graph. Consider a height function z = f(x, y) on a
closed surface. Let us construct a graph such that each closed contour is
represented by a point in the graph. The contours merge, split, appear,
or disappear at critical points of the height function. These bifurcation
points are the nodes of the graph.

peak

saddle

pit

saddle

torus Reeb
graph

height

level
sets

Problems
1. Draw a vector filed on the torus

(a) without critical points
(b) with two centers and two saddles
(c) with one center and one saddle point
(d) with a dipole and two saddle points

2. Draw a vector filed on the sphere with

(a) two nodes
(b) two centers
(c) only one critical point
(d) three critical points

3. Prove that at any time, there is a point on the earth where the wind
is not blowing.

4. Consider an island.

(a) Suppose the island has no lakes. Show that
# piks − # passes + # pits = 1.

(b) Suppose now that the island has lakes. Prove that
# piks − # passes + # pits = 1 − # lakes.


