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PREFACE

The notes in this volume were written as a part of a Nachdiplom course that
I gave at the ETH in the summer semester of 1995. The aim of my lectures was
the development of some of the basics of the interaction of homological algebra,
or more specifically the cohomology of groups, and modular representation theory.
Every time that 1 had given such a course in the past fifteen years, the choice
of the material and the order of presentation of the results have followed more
or less the same basic paltern. Such a course began with the fundamentals of
group cohomology, and then investigated the structure of cohomology rings, and
their maximal ideal spectra. Then the variety of a module was defined and related
to actual module structure through the rank variety. Applications followed. The
standard approach was used in my University of Essen Lecture Notes [C1] in 1984.
Evens [E] and Benson [B2] have written it up in much clearer detail and included
it as part of their books on the subject.

In the last three years there have been several advances which suggest an
entirely new approach {o the subject. Basically the shift has been towards a much
more categorical view of representation theory, and an expansion of the viewpoint
to include infinitely generated modules as well as the finitely generated ones. The
real surprise has been that some of the constructions in the category of all mod-
ules have had new and original applications for the category of finitely generated
modules. All of this is recent. At the time of this writing only a few of the works
have appeared in print.

Modular representation theory as a subject had its origins in the work of
Dickson and others around the early part of the century. However the beginnings
were fairly modest and it fell to Richard Brauer to bring the area to maturity
during the 1940°s and 1950’s. Almost single-handedly, Brauer developed most of
the now standard character theory and block theory for modular group algebras.
The block theory continues to be a subject of very active research. In the last
decade it has found new vigor in the challenge of the conjectures of Alperin and
Broué.

The mid to late 1970’s saw the emergence of a parallel theory, concerned
with the structure of AG-modules (k£ a field of characteristic p > 0, G a finite
group) in general rather than just the block distributions of the irreducible and
projective modules. There is a legendary story that Brauer, hirnself, used to advise
his students not to try to study the representation theory of p-groups. The subject
seemed to be too difficult with little or no promise of productive results. Yet for
the investigation of module structure, many of the most difficult and fascinating
problems can be easily reduced to questions involving the representations of p-
groups over fields of characteristic p. On the other hand, in this situation, all
group characters are trivial, the Grothendieck group is trivial and many of the
classical techniques of representation theory have no relevance. The only method
left open to us is homological algebra.
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viii Modules and group algebras

The foundations of a module theory for modular group algebras were laid in
the Evens-Venkov proof that the cohomology ring H*(G, k) is finitely generated
as a k-algebra, and Quillen’s characterization of the component of thc maximal
ideal spectrum of H*(G, k). Chouinard’s Theorem, that a kG-module is projective
if and only if its restriction to every elementary abelian p-subgroup is projective,
had much the same flavor as the work of Quillen. In the late 1970’s Alperin and
Evens generalized first Chouinard’s Theorem, using Alperin’s notion of complexity,
and then generalized Quillen’s result for support varieties of finitely generated
modules. The last was also done independently by Avrunin. Numerous advances
have been made since then. See the aforemcntioned books [B2, E] for a more
complete account.

In the last few years, the language and concepts of category theory have be-
come standard in many parts of representation theory. Some of the most intense
investigations in modern block theory have centered on problems of the existence
of stable or derived equivalences of blocks. For the module theory the expansion
of viewpoint has focused on the nature of other cohomology theories. In essence
this has meant looking at quotients by thick subcategories of the stable category
of modules modulo projectives. A beginning was made in [CDW] in the charac-
terization of homomorphisms in the difference one complexity quotients. While
the project settled a few questions it opened many more. One of the observations
of [CDW] was that complexity quotient categories have no Krull-Schmidt The-
orem, no uniqueness of decompositions of direct sums of objects. Later Rickard
observed that the Krull-Schmidt property could be recovered using homotopy co-
limits if only infinite direct sums were allowed. Suddenly a rationale for looking at
infinitely generated modules was created. However it meant that in order to use ho-
motopy colimits and other methods borrowed from homotopy theory, it would be
necessary to extend all of the notions of varieties and complexity into the category
of all kG-modules. This has now been shown to work (see [BCR1, BCR2]).

For me, one of the most satisfying parts of this is that the translation from
the category of finitely generated modules to the category of all modules was not
simply a matter of slavishly adapting theorems from one setting to another. In-
stecad it has required and led to the discovery of some genuinely new structures.
The most striking of these is Rickard’s idempotent modules in the stable category
[R]. These are modules M with the property that M & M = M @ P for some
projective kG-module P. It can be shown that the trivial module is the only non-
projective finitely generated module with this property. However in the catcgory
of all kG-modules such idempotents exist in pairs associated to any thick subcat-
egory which is ideally closed under tensor products. Under the right conditions
the idempotents can be used to classify the thick subcategories of the stable cat-
egory. In another remarkable application, Benson has used all of this machinery
to settle some questions on the varieties of modules M with H*(G, M) = 0. The
final section of these notes sketches another application which is an extension of
an observation of Benson.
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These notes are not intended to be an encyclopedic reference to the new re-
sults. They were notes wrillen for a graduate course and are really only meant to
be an introduction to the concepts necessary to understand the recent advances.
The first seven sections contain mostly old material. They cover the basics of mod-
ules over modular group algebras, diagrams for modules, triangulated categories,
the fundamentals of cohomology and the numerous incarnations of the cohomol-
ogy (cup) products. Sections 8 and 9 concern a relative homological algebra and
applications showing that ideals in the cohomology ring can be represented by
exact sequences in the module category. Most of this comes from joint work with
Wayne Wheeler and Chuang Peng. Section 10 contains a brief introduction to
varieties for modules while Section 11 is a preparation for the study of infinitely
generated modules. In Section 12 we use some of the earlier results to construct the
idempotent modules corresponding to the thick subcategory of the stable category
consisting of all finitely generated kG-modules whose varieties are contained in a
fixed closed subset of the maximal ideal spectrum of H*(G, k). In the final section
we sketch an application of the technology.

If this had been a two semester course then I might have attempted to get
into some of the details of the work on varieties of infinitely generated modules in
[BCR1] and [BCR2]. As it was, even the development of the idempotent modules
was only presented for a special case. Still, I hope the reader will find the notes to
be a useful introduction to the ideas.

Finally, T would like to thank all of the people who made these notes possible
and made my stay in Ziirich so enjoyable and productive. Particularly Ruth Ebel
and Rahel Boller of the ETH were most helpful with arranging all of the little
things that are so necessary to make a long stay away from home seem civilized.
Urs Stammbach and Guido Mislin both suffered through my lectures and provided
lots of informative comments as well as corrections to my numerous errors. Most
especially I need to thank Ruedi Suter for his hard work and for the excellent job
that he has done on these notes. I can say with confidence that any deficiency in
the manuscript is mine alone.

September, 1995 Jon F. Carlson
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NOTATION

Throughout these notes G is a finite group, and k is a field of positive
characteristic p. We write Hom and ® for the funcrors that one usually
denotes by Homy and &y, respectively. Let pgmod denote the category of
finitely generated left kG-modules.




2 Modules and group algebras
1 Augmentations, nilpotent ideals, and semisimplicity

In the first section we explore a few of the most fundamental propertics of
group algebras and their modules. One of our main points is the proof of Maschke’s
Theorem, which tells us that if the characteristic of & does not divide the order
of G, then every exact sequence of kG-modules splits and every kG-module is
both projcctive and injective. Therefore the application of homological algebra is
interesting only in the complementary case that the charactcristic of the coefficient
field k£ divides the order of the group G. We begin with an assortment of loosely
related facts.

We have the functor (forgetful functor)
kaOD e kmOD == kbec

to the category of finite-dimensional k-vector spaces which to every finitely gen-
erated kG-module associates its underlying k-vector space (which is finite-dimen-
sional because |G| < o0). So every module in ,~mod casts its shadow into the
realm of linear algebra. Indeed, if M is in ,,mo0, then the elements of the group
G act by k-linear transformations on the underlying vector space of M. So we
have a homomorphism p : G — GLgj, p(k) which associates each element of G
with the matrix of its action on M, relative to some chosen k-basis of M. The
homomorphism p is known as the representation associated to the module M.

A basic fact about group algebras is that the Krull-Schmidt Theorem holds
for kG, as for any finite-dimensional algebra. We refer the reader to [CR1, §6B|
for a proof.

Theorem 1.1 (Krull-Schmidt) Let M be a module in  ,mod. Then M is a
direct sum M = M, & --- & M,, of indecomposable kG-modules M, ..., M,,.
Moreover, if M = M] & --- @& M/, and M{,..., M, are indecomposable, then
m’ = m and there is a permutation © € S,, such that M; = ]W;r(i) fori=1,...,m.

We have the functor
S . kaOD — mODkG

to the category of finitely generated right kG-modules given by S(M) = M as
k-vector spaces for M in ,,mod, and mg = g~ 'm for m € S(M) and g € G. For
morphisms M = N we have S(a)(m) = a(m) for m € S(M) = M. The functor
S is an equivalence of categories. This explains why without loss of generality it
suffices to consider left kG-modules only.

The augmentation map ¢ = ¢¢ : kG — k is the homomorphism of rings

with 1, givenby > ay9+— > a,. It makes k a kG-module by defining a-1 = ¢(a)1
geG geaG
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for a € kG. Since g-1 = 1 for ¢ € G, the module k is called the trivial kG-
module. The kernel of the augmentation map is a two-sided ideal A = Ag in &G
of codimension 1 and has (g —1)4cc—{1} as a k-basis. It is called the augmentation

ideal. So we have the exact sequence in ,mod

00— Ao kG-k—0.

Proposition 1.2 The augmentation ideal of a finite p-group is nilpotent. (NB.
p = chark.)

Proof. We shall do induction on the order of the p-group GG. The statement is
trivial if G is trivial, so suppose first that |G| = p. Then G = (z) and
(L,z —1,2* —1,...,2P7! — 1) is a k-basis for the commutative algebra kG, and
(x—1,22 = 1,...,2P71 — 1) is a k-basis for Ag. Hence each element of Ag is of
the form a(z — 1) for some a € kG. But (z —1)P =2 —1=1-1=0. So A% =0.

Suppose now that |G| > p. Let H C G be a maximal subgroup. Then H is
a normal subgroup of index p in G. The natural projection G = G/H induces
a surjective homomorphism kG SN k(G/HI). Note that the augmentation map
ec ' kG — k factors as eqg = € g 06. So { .= ker ) C kereg = A, and moreover

0(Ag) = O(kereg) = Olkereg, g 0 0) = kereg gy = Agyu- We have already proved
that AG/H 0. Hence A?, C ker @ = I, and it suffices to prove that [ is nilpotent.

p=1
Fix an element x € G — H. Then since G = |J 2'H, each a € kG is of the

form =0
Z Z Arip T h Z Z a 1hh
1=0 he H 1=0 heH

If moreover a € I, we have

0="0(a) = ia(x)f > agn

1=0 heH

from which we conclude that > a, = 0, that is, > agiph € Ag for
heH heH
t=0,...,p— 1. It follows that I C kG - Ay. and in fact, [ = kG - Ag.
The formula g, (h; — 1)ga(he — 1) = glgg(g;1h1g2 — 1)(ha — 1) shows that
I? = kG - A%, and, morc generally, I™ = kG - A}. Since Ay is nilpotent by
induction, the proof is finished. U

Corollary 1.3 If G is a finite p-group, then A‘G‘

Proof. The sequence (dim.A%),_; o . is strictly decreasing as long as n is small
enough. U
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Corollary 1.4 If G is a finite p-group, then kG is a local ring with (unique)
mazximal ideal Ag.

Corollary 1.5 If G s a finite p-group and M is a projective module in ,mo?,
then M s a free kG-module.

This is a conscquence of the fact that projective modules are free for any
Noetherian local ring (see (5.24) of [CR1]). Now notice that the restriction of
any projective module to a subgroup is projective. Hence we have the following
corollary.

Corollary 1.6 If M 1is a projective module in -mod. then p" | dim M, where p”
is the order of a Sylow p-subgroup of G.

Recall that if M, N are in ,-mo0. then the k-vector space Hom(M,N) of
all k-lincar homomorphisms from M to N can be made into a kG-module:

(9f)(m) =g f(g~"m) (for g € G, f € Hom(M,N), m € M).

Recall that the radical rad A of a finite-dimensional algebra A with 1 over
a field is the intersection of all maximal left ideals in A. It is then a two-sided
nilpotent ideal. and it coincides with the sum of all nilpotent left ideals in A4 (see
(5.15) of [CR1]). The algebra A is semisimple if and only if rad A = 0.

We can now prove Maschke’s Theorem

Theorem 1.7 (Maschke) The group algebra kG is semisimple if and only if the
characteristic of k does not divide the order of G.

Proof. We will actually prove that &G has a nonzero nilpotent left ideal if and
only if chark | |G|.

First assume that chark | |G|. Let G:= Y g€ kG. Note that if z € G. then
geC
1G = G (= Gz). So if a € kG, then aG = £(a)G. Hence kG is a one-dimensional
(two-sided) ideal in kG. Since (G)? = |G| G = 0. kG is a nonzero nilpotent idcal
in kG.
Suppose now that char &1 |G/. (In particular, char & = 0 is allowed here.) We
will show that every exact sequence in , . mod splits. Let

0—A-B 2 c_—0
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be an exact sequence in ,,mod. Therc is a k-homomorphism ¢ : C — B such that
B¢ = idc. Define g : C — B by

S
Bi=1m ) up
Gl =

and note that ¢ is a kG-homomorphism and that 3% = id¢. To finish the proof of
the theorem, we need Exercise 1.1 which shows that kG has no nonzero nilpotent
left ideal. 0

EXERCISE 1.1 If A is a finite-dimensional algebra with 1 over a field and N C A
is a nonzero nilpotent left ideal, then the exact sequence

0—N—A—s A/N — 0

of A-modules does not split.

2 Tensor products, Homs, and duality

Two of the most fundamental and useful operations on the module category
are the functors Hom and ® from ,mo0d X, -mod to ,,mod. The two are intimately
related through duality, and they can be used to develop some interesting piece of
information about the group algebra and its modules. In this section we investigate
the duality and a couple of its ramifications. The most important application of
the section is the proof that group algebras are self-injective algebras, and hence
that the subcategories of projective and injective modules coincide.

Recall that if M, N are in ,.mo0, then the k-vector space M @ N can be
made into a kG-module by defining the action of GG as

glm®n) :=gm® gn (forge G,me M, neN).

As an aside we should mention that if A is any k-algebra and M, N are A-
modules, then M ® N is an A® A-module. For A = kG we have the comultiplication
A kG — EG ® kG. This is the kG-algebra homomorphism given by A(g) =g® g
(for g € G), the diagonal map, which is part of the Hopf algebra structure of kG.
Thus the kG-action on M @ N is the pullback along A of the kG ® kG-action.

For M in ,~mod we define the k-dual M* = Hom (M, k) as the kG-module of
the k-linear homomorphisms from M to the trivial module k. The G-action reads

(9f)(m) = f(g~'m) (forge G, feM*,meM).
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We should note here that this is a specialization of a more general technique.
That is, if A is any augmented k-algebra, M* = Hom(M, k) is a right A-module
by

(fa)(m) := flam)  (fora€ A, f€ M*, me M).

For A = kGG we make it a left module by our usual tricks.

Proposition 2.1 Let M, N be in ,mod. Then the kG-modules Hom(M, N) and
M* & N are naturally isomorphic.

Proof. Define § = 0y n : M* ® N — Hom(M,N) by 0(f ® n)(m) := f(m)n
(for f € M*, n € N, m € M). Everybody knows from linear algebra that 0 is a
k-linear isomorphism. The proof that 6 is kG-linear and the naturality are left as
exercises. M

EXERCISE 2.1 Verify that 6 in the proof of Proposition 2.1 is a kG-homomorphism.

0
EXERCISE 2.2 Verify that the isomorphism M* @ N —%, Hom(M, N) in the

proof of Proposition 2.1 is natural, that is, if M = M’, N #, N’ are homormor-
phisms in ,,mod, then the diagrams

Hom(M,N) <Y Mg N Hom(M,N) 222 A @ N
a*]\ %*@1 and B*l ll@.@
Onr N * Orr. Nt
Hom(M’',N) — M ® N Hom(M,N') —% M*® N’
commnule.

Consider the case that N = M in Proposition 2.1. Then End M = Hom(M, M)
2 M* ® M is a ring. It’s an easy exercise to show that the “proper” product on
M* & M (corresponding to that of End M) is given by the formula

(feom)(f @m') = f(m')- f & m.

Notice that if (m;) is any k-basis for M and (m}) is its dual basis, then
r:= > m; ® m,; corresponds to the identity homomorphism idys € End M. We

have tlhe kG-homomorphisms

I :k — MM and Tr : M* @M — &k
1 — r fem —  f(m).
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Notation If M, N are kG-modules, we will write M |N to mean that M is
isomorphic to a direct summand of N.

Lemma 2.2 Let M be in ,o,mod. If p{dim M, then k| M* ® M.

Proof. In fact, mf is a section (right inverse) of the homomorphism
M*® M k. O

Proposition 2.3 Let M be in ,mod. Then M | M&M*QM. Ifp| dim M, then
MOM|Me M QM.
Proof. If ptdim M, then M = M @ k|M ® M* ® M by Lemma 2.2.

So assume p| dim M. Let (m;) be a k-basis of M and (m}) be its dual basis.
Define

¥
MM @M =2 MM
[7]

by
bime fom) = (f(m)m', f(m)m) and
O(m,m’) ;= Zm@m;‘ ®m; + Zmi ®m;om.

Now 1) is onto, and

Pvh(m,m’) = (Zmz‘(m)mi—l—me(mi)m',Zm;‘(mi)m—l—me(m’)mi)

= (m,m'). 0

The previous lemma and proposition will prove useful in the next section.
The rest of the present section is devoted to showing that kG is self-injective (or
quasi-Frobenius). As a consequence, a kG-module is projective if and only if it is
injective. We need a definition and proposition which extend a well-known concept
from linear algebra.

Definition Let U,V be k-vector spaces. A map p : U x V — k is a bilinear
pairing if p is linear in both variables. It is nondegenerate if p(u,v) = 0 for all
v € V implics u = 0 and p(u,v) = 0 for all w € U implies v = 0. If U,V are
kG-modules, we say p is G-invariant if p(gu,gv) = p(u,v) (for g € G, u € U,
veV).
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Proposition 2.4 Suppose that p: U x V — k is a nondegenerate bilincar pairing
of finite-dimensional k-vector spaces U, V. Then U =2 V*. Moreover, if U,V are in
kom0 and p is G-invariant, then U = V* as kG-modules.

Proof. 'The nondegeneracy of p implies that the k-linear map o : U — V* dcfined
by o(u) = p(u, ) is an isomorphism. If moreover p is G-invariant, then o is in
addition a kG-homomorphism. O

For M in ,,mo0, the natural k-vector space isomorphism M = M** is a
kG-homomorphism. This allows us to identify M and M**. Note that even if M
and M* are (nonnaturally) isomorphic as k-vector spaces, they are in general not
isomorphic as kG-modules. Howcver, for M = kG they are isomorphic.

Theorem 2.5 kG = kG* as kG-modules, that is, kG 15 a Frobenius algebra.

Proof. The proof is an application of Proposition 2.4. Define a bilinear pairing
kG x kG — k by (g,9') — 644 (Kronecker symbol) for g.¢’ € G and extend
bilinearly. It is obviously nondegenerate and G-invariant. U

Theorem 2.6 kG is an injective kG-module, that is, kG is self-injective.

Proof. Suppose we have a diagram in ,,mod
0 A —~*B
kG

with exact row. Injectivity of kG means that we can fill in a kG-homomorphism

B X, kG which makes the diagram commutative. To show that we can find such
a 1, we take duals and get the diagram

kG* =2 kG
0 / J’a*
B~ 4 — 0

in ,»mod with exact row. Since kG* = kG by Theorem 2.5, and kG is projective,

there is a kG-homomorphism £G* Y B making the diagram commutative. Now
again take duals to get ¢ = 6. 0

Corollary 2.7 Every (finilely generated) injective kG-module is projective, and
every (finitely generated) projective kG-module is injective.

EXERCISE 2.3 Prove Corollary 2.7. [Hint: Step 1: The dual of a projective module
is injective and vice versa. Step 2: The dual of a projective module is projective.]
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3 Restriction and induction

In this section we introduce the restriction and induction functors, which
are used extcnsively in group representations and cohomology. The functors are
related to the tensor product operation through the Frobenius Reciprocity Theo-
rem. One consequence of Frobenius reciprocity is the fact that the tensor product
of any module with a projective module is again a projective module. This result
is extremely important for the homological algebra.

Definition Let M be in ,mod, H a subgroup of G, and L in , ;moed. We denote

the restriction of M to ,pmod as My or possibly M | g. The induced module e
in . ,mod is defined as

L1 = kG @y L
with kG acting by left multiplication.

Remarks

(1) As k-vector spaces we have

t
L1 =Pzl (3.1)
i=1
where x,,...,2z¢ is a complete set of representatives of the left cosets of H

in G. If H <G, then (3.1) is an equality of kH-modules, since for h € H
h(z; @ 1) = z; ® (z; "ha;)L.

The Mackey formula (scc (10.18) of [CR1]) provides a description of L1¢ as
a kH-modulc in the case where H is not necessarily normal in G.

(2) The functor

L»—»LTG

is exact because kG is a free right £H-module.
Note that
Res$ @ ,omod —— 5 mod
M — M|y

is an exact functor for trivial reasons.
(3) kG = kg 1“ is the module induced from the trivial subgroup () of the trivial
k()-module k.
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Theorem 3.1 (Frobenius reciprocity) Let M be in ,~mod, H a subgroup of G,
and L wn ymod. Then there is a natural isomorphism in  ~mod

oM~ (LeM|°.

G i G
Proof. Define LT7 @ M %’ (L ® M| )T~ by the rules w((g R ® m) =

g@ (U ®g tm)and 0(g® (I1@m)) :=(9g®1)@gm (for g€ G, 1 € L, m € M).
Since 9, 8 are surely well-defined, inverse to each other, and natural, it remains to
be seen that 1 is a kG-homomorphism: for z,g € G, € L, m € M we compute

Yle((gel)em))=¢((zg®@)@zm) =zg@ (I® (xg)flmm)
=2g@(®g'm)=z(g® (®g 'm)) =2y((g®) &m).
U

The Eckmann-Shapiro Lemma, which follows, is very similar in form to
Frobenius reciprocity though the proof is quite different.

Proposition 3.2 (Eckmann-Shapiro Lemma) Let M be in ,-mod, H a sub-
group of G, and L in , ;mod. Then there are natural isomorphisms

Hompe(L19, M) = Homyppy (L, M | 1),

Homyg (M, L19) = Homgy (M | . L).

[In. other words the functors IndS$; and Res% are adjoint functors on both sides./

Proof. Let o : L — L1¢ and g L1 - L be the two kH-homomorphisms
defined by a(l) :=1® [l and B(g® 1) := {gl ifge H

0 otherwise

(for g € G), respectively.

@
Define Homy(L1¢, M) = Homywn (L. M |1) by
6

Y(o) :=0ca and G(T) (g&l):=g7(l).

Define Homy g (M, LTG) % Homgp (M g, L) by

w(p):=Pp and n(v)(m):= Zt:’l'z ® v(z; 'm)

=1

where x1,...,x; is a complete set of representatives of the left cosets of H in G.
It is an easy exercise to show that these maps are isomorphisms. Check the usual
things. W



Section 3. Restriction and induction 11

Consider the set of isomorphism classes of objects in , ,mo0. The direct sum
and the tensor product induce an addition and a multiplication on this set. The
next theorem shows that these operations descend if we compute modulo projective
k(G-modules

Theorem 3.3 If P is a projective module in ,-mod and M 1is any kG-module,
then P & M is projective.

Proof. We prove the theorem in the case that M is in , ,mo0. There is then a
kG-module @ such that P& Q =2 (kG)" is a free kG-module of rank n for some n.
We employ Frobenius reciprocity for the trivial subgroup () C G. Let V be a free
k()-module of rank n, which is nothing but an n-dimensional k-vector space. We

have P& Q = (kG)™ = V1% and therefore
POMOQRIM=(POQR)®M = V1C @ M V® LMO)TG o~ (RG)dim M

So P® M is a direct summand of a free module. 1

Notation We will write L = M & (proj) to mean that L = M & P where P is
some projective module.

Lemma 3.4 Let N be in ,,mod. If N ® N =2 N G (proj) and k| N, then
N 2 k& (proj).

Proof. Tet N = k& L. From N & (proj) = NN 2 (k@ L)® (k® L) =
kdLeLd(L®L)ZN®LG(L®L) we see that L is a direct suinmand of a
projective module. U

Theorem 3.5 Let M be in ,mod. If M @ M = M & (proj) and M is nonprojec-
tive, then M = k & (proj).

Proof. From M ® M = M @ (proj) we get that M* @ M* =~ (M ® M)* =
(M @ (proj))" = M*& (proj) and also (M* ® M) ® (M*® M) = M* ® M & (proj).

Suppose p 1 dim M. By Lemma 2.2 we have k| M* ® M, and by taking
N = M* ® M in Lemma 3.4 we recognize that M* ® M = k & (proj). So

M@M* @M= (ke (proj)) ® M =~ M & (proj). (3.2)
On the other hand we have

MM @M=M" @M®M==M & (Mo (proj)) = M* ® M © (proj)
=~ k © (proj) (3.3)

From (3.2), (3.3) it follows that M = k & (proj).

i



12 Modules and group algebras

Assume now that p| dim M. Then M & M | M © M* ® M by Proposition 2.3.
On the other hand M @ M* @ M = M* @ M & (proj) as in the first line of
equation (3.3). Hence M @ M | M* & M & (proj). Taking n'" tensor powers we get

(M ® M)® | (M*® M & (proj))%"
IR R
M®?" @ (proj) = (M®™)®*"  M* & M @ (proj)

Hence M™* @ M contains at least 2" direct summands. But n can be chosen arbi-
trarily large. Hence the case p| dim M does not occur. ]

There are a few other facts about projectives which will be useful. These will
not play a big role in our theory but may be needed occasionally. We omit the
proofs because they are not particularly important for what we will do later.

We already know that kG is a Frobenius algebra. Since kG is even a symimet-
ric algebra, the head and the socle of each principal indecomposable £G-module
are isomorphic.

Theorem 3.6 Lelt P be an indecomposable projective kG-module. Then
soc P 2 P/rad P is a simple kG-module. FEvery simple kG-module is isomorphic
to soc P = P/rad P for some indecomposable projective module P.

We refer to [CR1, §9A] for a proof.

4 Projective resolutions and cohomology

Definition A projective cover of a module M is a projective module Py together
with a surjective homomorphism Py; — M satisfying the following property: if
Q Py Misa homomorphism from a projective module ) onto M, then there is
. . . < .
an injective homomorphism Py; — @ such that ¢ = fo. In fact, it can be seen
[rom the proof of the next theorem that any homomorphism ¢ : Py; — @ which
satisfies ¢ = 6o must be injective. Likewise any 7 : () — Pjs which satisfies e7 = 6
must be surjective.

If Py =» M is a projective cover of M, then no proper projective subrodule
of Pys is mapped onto M. Note that projective covers, if they exist, are unique up
to isomorphism.

Theorem 4.1 Let M be in omod. Then M has a projective cover.
Proof. The easiest way of proving the theorem would be to invoke the fact that

every module has an injective hull. So take an injective hull of M* and dualize.
However, we follow another route. The argument given below will be of use later.
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Choose Fps to be a projective module in ,mad of smallest dimension and
such that there exist Pas Sy M (such a Py exists because M is a quotient of a
free module of finite rank). Now suppose we arc given @ and 6 as in the definition
above. Since Py and () are projective, there is a commutative diagram

Pz = @

Let ¢ := 70 : Py — Py We claim that ¢ is an automorphism. Since Py is
finite-dimensional, we have Py = ker¢™ & im ™ for n sufficiently large (Fitting’s
Lemma). So imy" is projective. Moreover, £ o ¢y™ = ¢ by the commutativity of
the diagram. By minimality we have ker ¥ = 0, that is, ¥ is an automorphism.
Hence o is injective. ]

Proposition 4.2 (Schanuel’s Lemma) Suppose that P ~» M and Q 2y M are
two homomorphisms onto M with P and () projective. Then kere Q) = ker0® P.

Proof. We have the commutative diagram with exact rows and columns,

0 0
! !
ker 0 ker 6

0O — kere —— B —1 ¢ — 0

H pullback %
0 —— ketre — P ——— M — 0
! i !
0 0

where B = {(p,q) € P©Q | c(p) = 6(q)} is the pullback of the diagram defined by
e and 6. It’s an easy exercise to fill in all of the maps. Since P and @) are projective,
the middle row and column split, that is, B = ker0§ & P and B X kere ® (). [

Definition A minimal projective resolution of a module M is a projective reso-
lution

6+ an 6n71
L PSP, = s S PP S M0

(or in shorthand P, S M ) such that if Q. — M is another projective resolution
of AJ, then there is an injective chain map p, : (P. = M) — (Q. — M) and
likewise a surjective chain map , : (Q, — M) — (P, =» M) such that both p,
and p/, lift the identity on M.
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A minimal injective resolution of M is an injective resolution

an—1 I n
0—>Mi>_[0—>"'d—>_[_(n_l) 0 I_na*_l

6
(or in shorthand M <> I,) such that if M < J, is another injective resolution of
M, then there is an injective chain map v, : (M — [,) — (M — J,) and likewise

. : 6
a surjective chain map v, : (M — J.) — (M < I,) such that both v, and v
cover the identity on M.

Theorem 4.1 shows that minimal projective resolutions exist. In fact, let
Py =» M be a projective cover of M, P, —» kere a projective cover of kere, and
so on. To obtain a minimal injective resolution we proceed similarly by successively
constructing injective hulls.

Theorem 4.3 Let M be in omod. Then M has a minimal projective resolution
and a minimal injective resolution.

. ) A 2]
Definition Let P, —» M be a minimal projective resolution and M — [, a

minimal injective resolution of M. We define for n > 0

Q" (M) :=ker 0,1 = im 0,, = coim 8,, = coker 0,41

(where ker J := ker€), and for n = 1 we abbreviate Q' (M) by Q(M). Further, let
Q "(M) := coker "' = coim 0" = im " = ker 9"

(where coker 8° := coker #). For n = 0 we let
QM) :=Q (M),

so that M = Q°(M) & (proj).

Schanuel’s Lemma shows that the modules Q" (M) arc well-defined up to isomor-
phism. If we drop the adjective “minimal” in the definition of the modules Q™ (M),

we get modules Q" (M) = Q™(M) & (proj).

G
Suppose that P, — M and M — I, are a minimal projective and a minimal
injective resolution of M, respectively. We can splice them together and get in this
way a minimal complete resolution of M. It looks like this:

o ) o
— P = p—=-5P, =, P, — ...

N\ SoeN S0 N /!
QL(MD) M Q- 1(M)

where P_,, ;== I_(,_1y and _,, := 9" for n > 0, and 9y := fe.
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Proposition 4.4 Let M, N be in ,-mod, H a subgroup of G, L in ,ymod, and
n,m integers. Then

Q™ (proj) =

e

)
) Q*(M) has no nonzero projective submodules.
) Q"M & N) = QM) & O (N).
) (M) = Q (M.
(v) Qr(Q™(M)) = QrHm(M).
) Q™M) g QM(N) = Q" (M @ N) © (proj).
) QM) Lg = Q" (M |#r) @ (proj).
) QL)Y 20 (L1Y) & (proj).

Proof. 1In view of (iv) (for n > 0) and the definition of Q% we may assume that
n, m are positive integers.

(i) and (ii) are trivial. (iil) follows from (ii) together with Schanuel’s Lemma.
(iv) is clear by duality. (v) follows by truncating a minimal projective resolution
of M to a minimal projective resolution of Q™ (M).

For (vi) let --- — P, R Poi — - — Py 5 M — 0 be a minimal
projective resolution of M. By tensoring this exact scquence with N we get the
exact sequence - - - RN —/—— On &1 P, 1®&N — -+ - Pp@N ECIN M&N — 0,

which is a (not necessarlly minimal) projective resolution of M ® N. So
Q"(M)g N =Zim(d, ®1) 2Q™(M @ N) & (proj). (4.1)
Similarly we have that
Q™ (M) & Q*(N) = Q"(Q™(M) & N) & (proj). (4.2)
Putting (4.1) and (4.2) together we arrive at

Q™M) 8 Q(N) =

~o

0" (Q™(M ® N) @ (proj)) @ (proj)
Q" (Q"(M ® N)) @ (proj) > Q""™(M ® N) @ (proj).

Since the restriction of a minimal projective resolution of M is a (not neces-
sarily minimal) projective resolution of M | g, we get (vii).

If Q. 2> L is a minimal projective resolution of L, then kG @rm Q. —2% L1¢

is a (not necessarily minimal) projective resolution of L7%. So (viii) follows. [
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Definition Let M, N bein ,;mo?. Let P, — M be a projective resolution of M.
Applying Homgg( , N) we get the complex

0 — llomgg (%, N) — Homygg (P, N) — - .
Then the Exly functor is defined as the cohomology of the complex:

Extyo(M,N):=H" (Homk,(;(P,,, N))
If M =k is the trivial kG-module, then we have a special notation:
H™"G,N) :=Extys(k. N).

This is called the cohomology of G with coefficients in N.

We will assume that the reader has some familiarity with cohomology. In par-
ticular, the Ext functor does not depend on the choice of the projective resolution.

Moreover
Extie (M, N) = H"(Homgc (M, 1.))

where N < I, is an injective resolution of N. See [HS] for details.

Theorem 4.5 Let M, N be in o mod and let n be a positive integer.

(i) Every cohomology element ¢ € Extys (M, N) is represented by a homomor-
phism ¢ : Q"(M) — N.

(ii) Every homomorphism ¢ : Q*(M) — N represenls a cohomology element
class(() € Exty» (M, N).

(iii) Two such homomorphisms CA,E represent the same class if and only zfQc —¢
factors through a projective kG-module.

Proof. (i) Let P, =» M be a minimal projective resolution of M. Now ( is
represented by a cocycle ¢’ : P, — N. Being a cocycle means that ' 0 9,,; = 0.
Hence ¢’ factors through coker 9,1 = Q™*(M).

T Il Onts Pn -
N\
C/JV Qn(M)
/¢

4]\7

(ii) If we are given C: aQ™(
cohomology element class(()

M) — N, then (og = (o0, : P, — N represents a
:= class(C 0 q) € Extio(M,N).
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(i) If class(¢) = class(¢), then (( —¢)oq = no 8, for some n : P,_; — N. So

é— = n factors through P,_, where Q™(M) <, P__, is the inclusion.

Suppose that ¢ := (= (- Q"(M) — N factors through a projective module
P, say ¢ = fa. We shall show that ¢ is a coboundary, i. e., that it factors through
P,_1. Consider the diagram

P’I’L—]. _ ..
v/

n (M) U‘
o \e

I}

N P

Since P is injective, we have a homomorphism ¢ : P,,_; — P with ¢ = a. So
@ = [y factors through P,_1. |

One of the things that we have proved is half of the following proposition.

Proposition 4.6 If M = N factors through a projective module, then it factors
through any injection of M into a projective module and also through any surjection
of a projective module onto N.

This leads naturally to the next section.

5 The stable category

There are several natural homes for doing cohomology theory. For instance,
any of several derived categories can be used for this purpose. Here we will focus
on the stable category, which has the advantage of being very closely related to
the module category.

Definition Let . stmod denote the category of finitely generated left kG-modules
modulo projectives, that is, the stable category. The objects of . stmod are the
same as those of , ;mod. If M/. N are in ,,mo0, let PHomyg (M, N) be the subspace
of Homyg (M, N) consisting of all those kG-homomorphisms which factor through
projective modules. Now we define

Hom _gimoo(M, N) := Homy (M, N) := Homyg(M, N)/ PHomyg (M, N).

It is an easy exercise to check that ,.stmod is a category. Of course we
have a natural functor , ,moed — ,.stmed which is the identity on objects and
projects morphisms to the cosets modulo the corresponding PHomyg-subspaces.
Theorem 4.5 can now be expressed as follows.
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Theorem 5.1 Let M, N be in omo0. Then Extpg(M, N) 2 Hom, o (Q"(M), N)
for any positive integer n.

Definition Let P, Q. be nonnegative complexes, and suppose that we are given
two chain maps p, v, : P =3 Q.. We say ., v, are homotopic in positive degrees
if there exist maps s; : P, — @;41 such that

Wi — V; = 81 o@f-l—(’?ialosz (for all 7 > 0).

We denote by C(P,, @.) the classes of chain maps v, : £, — @, under the relation
of homotopy in positive degrees.

Proposition 5.2 Let P, =» M, Q. 2 N be projective resolutions of the modules
M, N 1in ,mod, respectively. Then for every integer n there are natural isomor-

phisms
HomkG(Z\/j, A[) = C(P*7 Q*) — HomkG (Qn(]\{), Qn (]Vv)>

Proof. We indicatc how to construct the maps. Without loss of generality we may
assume that n > 1.

Let ¢ € Hom, (M, N). Then any representative & € Homgc (M, N) of ¢ can
be lifted to a chain map u, : P, — Q.. Suppose that § € Homge(M, N) also
represents (, i.e., that o — 3 factors through a projective. Let v, : P, — @« be a
lift of 5. We have the commutative diagram (without the maps s,)

6P
—s P — P £

J{Nl‘ﬁ/so l#o—lfo /3_1 la—ﬁ

'—>Q1—Q>QO“—’N——)O
61

M ——0

Since a— (3 factors through a projective, it factors through Qg (see Proposition 4.6),
say 8 o s_; = a — (. The commutativity of the diagram shows that we have
Oo (g —vo—s_10e) =0, that is, im(ug — 19 —s_10e) C kerf =im a?. Since P,
is projective, ug — vg — s_1 o € factors through @, say

o — Vp = S—_| o£+81Qoso.

Continuing this way—using the projectivity of P, and the exactness of the lower
row at QQ,—we get s,, : P, — @, .1 with

Mn—ynzsn_loaf:—o—afﬂosn (n > 0).

Hence we have constructed a map Hom, (M, N) — C(P., Q.).
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Let n € C(P,,Q.). Then any chain map u« : P. — Q. representing 7 restricts
to the maps

Q™ (M) @ (proj) = ker dF_, t 74, ker 89, = Q™(N) ® (proj).

Suppose that v, : P, — (), is another representative of 7. So p. and v, are chain
homotopic in positive degrees. That is, p,—1 — Vp—1 = Sp_2090 + J 0 s,_1 for
n > 1. Hence u,,_ — v/, = 00 8,1 factors through the projective module Q.
This gives us a map C(P., Q«) — Hom, . (Q"(M),Q"(N)) for n > 1.

Similarly we can map Hom,, (Q"(M), Q" (N)) to the set of homotopy classes
in negative degrees from any injective resolution of Q”(]W ) to any mJectlve resolu-
tion of Q™(NV). In turn this is mapped to Hom, (2™ (Q2"(M)), Q~™(Q"(N))) for
m > 1. In particular, for m = n we have Q" "(Q"(M)) =2 M, Q@ "(Q"(N)) = N
in ,;stmod. So we have got a map Hom,(Q2"(M),Q*(N)) — Hom, (M, N). O

Proposition 5.3 Let M = N be a morphism in Lcmod. Then there exist projec-
tive modules P, Q and modules L, L in ,,mod such that there are exact sequences

0-MLNoQLL -0 ad 0—L5MoP N0
with pry o o’ = &”|p1 = @ mod PHomyg (M, N) for pry being the projection
onto N. Moreover we can assume that L = Q(L") & (proj).

Proof. Let kera «— @ be an injective hull of ker «. So we have a commutative

diagram
kera — M

g

Q
Since o’ := (‘g) : M — N @ (Q is an injective map, we get the exact sequence
0-M2NaQLL —0
with L' := coker a’.

Let PP — L’ be a projective cover of L’. Then we have the commutative
diagram with exact rows

0 —— Q) 4> P — I/ 9
[# g |
0 —— M Y NeQ —— I/ — 0

where 1’ exists because of the projectivity of P/, and ¢ is induced by 3. So we
have a sequence y
(£) ¥

0L *SmoP " NeQ -0 (5.1)
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which can be checked to be exact. Now we can split off the projective module Q.
But this means that we have to allow to split off a projective summand of M. In
order to restore M, we add this projective summand to Q(L’). O

EXERCISE 5.1 Show that the sequence (5.1) is exact.

Lemma 5.4 Let C., D, be nonnegative chain compleres and pu. : C. — D, be a
chain map. Then there exists a totally split exact nonnegative chain complex D,
of projective modules and a chain map p', : C, — D, such that

) - ‘ /
(%) :Ci = D.® D,
18 1njective.

Proof. Let n be the least index such that pu, in not injective. There exists a

projective module P, and a morphism C,, SN P, such that (Z,") :Cp, — D, & P,
is injective. (Choose P, to be an injective hull of ker u,, [cf. the beginning of the
proof of Proposition 5.3].) Therefore we have a commutative diagram

8 a 0
= U4 —/—— Cn—l—l - Ch — Lp1 —— -

[ns2 | (riy) [ =
= Dpyo ——— Dp1 @B, DhnoPy, —— Dyoy — -+
(8) (8 0) (6 0)
0 01
If the maps ..., nt3, Lnto, (Z?:}.}) are all injective, then we are done. Otherwise
repeat the process. LJ

Remark There are numerous variations of Lemma 5.4. For example, with the
same hypothesis there is a totally split exact complex C! of projective modules
and a chain map y/, : C, — D, such that

(e ) : C.®Cy — D,

is surjective. It may be necessary here to allow C”_; to bc nonzero.
EXERCISE 5.2 Prove the above remark.

Proposition 5.5 In Proposition 5.3 the isomorphism classes of 3, v, and L (and
also L") in ostmod are completely determined by the class of a in ,stmod.

Proof. Let M = N be a morphism in roMod. Suppose that
0—>]\/I—d—>N@Q—>L’—>0 and O—»JVI—d—uV@Q—»U—»O

are exact sequences with pry o & = pryo& = a mod PHomygg (M, N) and where
0, Q are projective modules. By letting N & Q take the role of N, we may assume
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that « is injective. More precisely, we are given a diagram with exact rows

Oo——s M 2= N 5L ——0

JPM JPN (5.2)

7

~

U——0

0 — s Mad —2 . NaP

where pps, py are the natural inclusions and where Q, P are projcctive modules.
Moreover py o = &’ o ppy mod PHomgo (M, N & P).

We must show that L’ 2 U in ,,stmod and that the classes of v and +/
coincide. According to Proposition 5.2 it suffices to show these equivalences after
applyving the functor 2™ for some integer n.

Let PP — M, P, —» N, P" - L', Q —» Ma&Q, Q, —» No& P, and

®

Q" — U be projective resolutions such that we have commutative diagrams with
exact rows

0 P % P, P/ —— 0
l | J
0 M —=— N L' —— 0
and (
0 —— Q. —— Q —Q ——0
0 — > Ma) " NoP —— U — 0.
Je may further assume that the resolutions P, — M and P! — L' arc minimal.

The square in diagram (5.2) lifts to a diagram of projective resolutions

[83
P! — P,

l”* Ju* (5.3)

’
84

7 x
Q. — @
where v, o o, and ¢, o 1, are chain homotopic in positive degrees. So we have a
diagram

o] o

P Pyt P
larl+i la,l lan—l
a o
G — P”_Ll Pn Pn—l s ...
oo e e
o o

T Qn+1 - QTL - Qn—l —
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. Sn . el
and a chain homotopy P/ — ), in positive degrees, so that v, o, —a op, =
Sn—1 00+ 0o s, for n > 0. Now each a, is injective, and @Q, 1 is an injective
module. Hence there are maps t,, : P,, — (),.+1 such that t,, o o, = s,,. Thus

Vnoan—aglo,unzsn-loa‘FaOSn:tn—loan—lOa+8otno(1'rl
:(tn—loa“}'aotn)oan

or
(Un —ty_100—=0otp)oq, =l o iy,

Note that v,, —t,,_1 00 — 0 oty is still a chain map which lifts py. So replace v,
by v, —t. 00— dot,. Now we have v, o o, = a/, © 1, in positive degrees. that is,
(5.3) commutes in positive degrees. Taking kernels at the (n — 1)%* stage, we get

™ (a) 2" (4)
_—

0— Q¥ M) Q"(N) & (proj) —— oLy -0

J{,u,'n_l jruil#l J,w“il

0 — Q"(M) ® (proj) - (N @ (proj) D @M(U) & (prof) — 0
where 1,1 is induced from v/, |. By adding a suitable exact sequence of pro-
jectives to the bottom row, we can make the vertical maps injective. So we get
an exact sequence of cokernels whose first two terms arc projective, and therefore
so is the third. Hence Q™ (U) @ (proj) = Q*(L’) & (proj) and Q"(v),Q"(v’) arc
congruent modulo maps which factor through projectives. This proves one half of
the proposition. The other half follows by applying the first half to the dual of the

sequence 0 — L LN MagP o, N — (. (]

Whereas ~mod is an abelian category, ; ~stmod is only a triangulated cate-
gory. That is, in general there are no kernels and cokernels in ,,stmod. In place of
this we have the fact that for each morphism in ,stmod there is (up to isomor-
phism) a uniquely defined object which is the third object in the triangle of the
morphism. This is a key point in the definition of quotient categories, and we may
see some of this later on.

Our short term interest in triangulated categories will be more philosophical.
The stable category is a natural setting for cohomology, and we want to be familiar
with some of the properties of the category. In particular, we will often want to
shift from one form of a triangle to another. For more details on triangulated
categorics the reader is referred to the books by Happel [H] and Weibel [W].

Definition A triangulated category is an additive category €, together with
an automorphism 7, called the translation functor, and a collection of triangles
which satisfy the following conditions and axioms. Each triangle is a sextuple
(U.V,W,a,,v) consisting of objects U, V, and W and morphisms o : U — V,
g:V-o>W,andy: W —TU.
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Axiom 1 Any sextuplc isomorphic to a triangle is a triangle. Any morphism
a: U — V can be embedded in a unique triangle, (U, V, W, a, 8,7). The sextuple
(U,U,0,idy, 0,0) is a triangle.

Axiom 2 If (U, V,W,, 3,7) is a triangle, then so are (V,W,7TU, 3,v, —7T a) and
(T 'W,U.V,-T 'v,a,8).

Axiom 3 Given triangles (U.V,W,a,3,v) and (U, V',W',a’/,3',v") and mor-
phisms f : U — U’ and g : V — V' such that o’f = ga, then there exists a
morphism h : W — W’ such that #'g = hg and v'h = T f o . (The triple (f, g, h)
is & morphism of the triangles.)

Axiom 4 (Octahedral Axiom) Given triangles (U, V., W, «a, 8,7). (V, W, U, u, v, 8),
and (U, W' V', uc, 7, p) then there is a triangle (W, V', U’ f.g,6 o T 3) such that
gr=v, pf =~, f[B=7u, and Taop = dg.

Theorem 5.6 The stable category . ..stmod is a triangulated category wilh trans-
lation functor T = Q7 '; the sextuple (U, V,W,a, 3,7) is a triangle if and only if
there exist exact sequences

14 2!

0 U —>— Vg(proj) —— W 0
and
0 v 2 we (proj) —— 0 NU) —— 0

in omod such that class(a’) = «, class(3') = class(8”) = 3, and class(y') = 7.

Proof. Axiom 1 is essentially Propositions 5.3 and 5.5. Axiom 2 is also a conse-
quence of Proposition 5.3. Axiom 3 follows easily from the definitions. Axiom 4
asserts the existence of maps f and g such that (W.V'.U’, f, 9,6 0 Q7' (8)) is a
triangle and such that we have a commutative diagram

v o —- v . w oY
| c o oo |
7 _He | W’ N Vv’ _r Q1)
v Q g
‘/” L) U/ pr— U/
lp O 9 9021 ()
Q—l(U) m Qfl(v) ﬂ Q—l(W)
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It is called the Octahedral Axiom because, when we identify U with Q=1(U), V
with Q (V) etc., we get a diagram which looks like an octahedron. Four of the
faces are the triangles. The axiom says that any two paths with the same beginning
and ending points are the same.

A full verification of Axiom 4 is rather complicated, and we will not attempt
to include it here. However, we can get the flavor of the axiom by examining the
following special case. Namely, imagine that A C B C C,and U = A,V = B,
W =B/A W =C,V'=C/A, U" = C/B. We have a commutative diagram with
cxact rows and columns

—— B/A —— 0

L CJA —— 0

— QO — Iy« o
(‘

C/B —— C/B
| |
0 0

So the axiom says that C'/B = (C/A)/(B/A). This is often called the Third
Isomorphism Theorem. (]

Lemma 5.7 If (U, V,W,«a, 3,7) is a triangle in  stmod and M s in ,mod, then
UM,VOMWeM,a®idy,8®idy,y®@idar) is a triangle in ,.stmod.

Proof. This follows immediately from Theorem 3.3 & Proposition 4.4 (vi) and
the definition of a triangle in Theorem 5.6. O

Proposition 5.8 If (U, V., W, «, 3,7) is a triangle in ,ostmod and M is in ,,mod,
then we have long exact sequences

Homy (M, U) = Hom, (M, V') <= Hom, (M, W)
2 Extho (M, U) — Extyo (M, V) — Extyo (M, W) —

— BExtio(M,U) — - (5.4)
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and

Hom, (W, M) 25 Hom,(V, M) 25 Hom, (U, M) —
— Extro (W, M) — Ext}o(V, M) — BExt o (U, M) —
— Exti(W, M) — ---

(Note that there are no zeros on the left ends.)

Proof. Recall that for n > 0 (see Theorem 5.1 and Proposition 5.2) Ext}o(M,U) =
Hom, (M,Q " (U)) and Exty(W, M) = Hom, (" (W), M).

We show that there is a long exact sequence

RRLASIIR Hom, (M. Q(U)) A Hom,,; (M, Q(V)) 2., Hom,. (M, (W)
00, Hom, (M, U) 2 Hom, (M, V) 25 Hom, o (M, W) —"—
—2 . Hom, (M. () 5 Homy o (1,971 (V) 2
which extends (5.4) to the left.
By Axiom 2 it is enough to show that
). (M, Q~"(W))

Hom, o (M.Q "(U)) 2" Hom, ¢, (M, =" (V)) =2 Hom,,

is exact. Surely im Q™" (). C ker Q7"(3).. Let ¢ € ker Q7 "(3),. The rows of the

following diagram define triangles
—idyn—
N QM)

O (M) 0 Q=1 (M)
JQ”(O J JQ"*(C)
, —0Ya
ow L gy 229 gy

v

By Axiom 3 there exists n : Q" }M) — Q }(U) with Q7 (a) op = Q" 1(().
Hence ¢ = Q7" (a) o Q7" H(n) € im Q™ "(a),.
]

The exactness for the other sequence follows dually.

Corollary 5.9 If (U, V.W,«.3,0) is a triangle in ,,stmod, then U & W

V & (proj) in ,omod.

I%
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Proof. We must show that the short exact sequence from Theorem 5.6

0 U — V& (proj) T W 0 (5.5)

splits. The usual long exact cohomology sequence for (5.5) reads

[8

*

. — Homyg (W, V & (proj)) 2 Homya (W, W) 2 Extl o (W.U) 2=

o, Extye (W, V @ (proj)) — -

The composition of o, with the canonical isomorphism Ext; (W, V & (proj)) =,
Extyo(W, V) is the morphism which occurs in the long exact sequence (5.4) for
M = W. Proposition 5.8 with v = 0 and M = W shows that o/ is injective. Hence

= 0 and A, is surjective. Now § € Homye (W, V @ (proj)) with idy = 5, 06 = 36
is the required splitting map. O

6 Products in cohomology

In this section we define the cup product in group cohomology and show some
of its properties. The existence of the tensor product operation permits a host of
variations on the classical definition. The remarkable thing is that they are all the
same. We begin with a basic result on the tensor product of complexes.

Suppose that the complexcs C, and D, are both either bounded above or
bounded below. That is, either C,, = 0 and D,, = 0 for all n sufficiently large or
both C_,, =0 and D_,, = 0 for all n sufficiently large. The tensor product C, ® D,
is defined to be the complex with

(C.® D) =P Cia Dy

+i=n
and with boundary homomorphisms given by
dr®y) =0r®y+(—1)"8"r® dy

if ¢ is a homogeneous element of degree degz, that is, if € Cyeg -
EXERCISE 6.1 Show that 00 = 0.

EXERCISE 6.2 Let

0—-ASBACc—0 and 0D LESF 0
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be two short exact sequences, and define the two complexes C, and D, by

C.: 0—-B%C 0 withC in degree 0,
D.: 0—EZSF 0 withF in degree 0.
Then we have
—1®6
O—>A®Da®7 B E (agm) @ (BR1 1Q6) CoOF —0
CE (6.1)

N s

C. & D.

Show that the sequence (6.1) is exact. Notice that H.(C.) = H1(C.) 2 A, H (D,) =
H(D.) =D, H(C., ®D,) = H:(C. ® D) = A D.

The Kiinneth Theorem which follows is stated very differently from what
would be found in most texts. Our statement and proof rely heavily on the fact
that we are taking our tensor products over a field. Otherwise a Tor term would be
involved in the homology. (See [HS] for a more thorough treatment.) A key point
is that the isomorphism in Theorem 6.1 is an isomorphism of kG-modules.

Theorem 6.1 Let C,. and D, be complexes in ,-mod both of which are either
bounded above or bounded below. Then for any integer n we have that

H,(C,®D,) = @Hi(c*) ® H;(D.)
i+i=n

as kG -modules.

Proof. The complex C, is --- — O, Cn_1— ---. Define Z,, :=kerd,, C C,

and B,_, := im0, C Z,,_1 C C,,_1, so that B,_1 = C,,/Z,. We consider Z, and
B, as complexes with zero differentials. So we have an exact sequence of complexes

0—Z.—C.—B,_, —0 (6.2)

where the chain map Z, — C, is the inclusion and C, — B,._, is the map of
complexes induced by 0.. By tensoring the sequence (6.2) with D,, we get the
exact sequence

0_>Z*®D*_’C*®D*_>B*—1®D*_>O

whose long exact homology sequence reads

- — H,L(Z* & D*) — Hn(C* & D*) i Hn(B*_1® D*) i’ Hn—l(Z* @ D*) o
(6.3)
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Since the differential in Z, is zero, we have that Z.® D, = @ Z;® D, as a complex
and H,(Z,®D,) >~ @ Z;® H;(D.). By the same argument we have isomorphisms

i+j=n
t+i=n—1
Our claim is that the connecting homomorphism ¢ in the long exact homology
sequence (6.3) is injective. To prove this consider the diagram

0 —— PZeD; @CeD; S @B;eD; —— 0

i+i=n 1tj=n i4+j=n—1
® (-1)'18d J@ l ® (1180
i+j=n i+j=n-—1
0—>@ZZ®DJ \>@Cz®DJ —>@B1®D] ? 0
i+j=n—1 t+3=n-1 t+y1=n-2

where 8 =@ (0®1+(-1)"1®9). Let x = b®@d € B; ® Hj(D.) — Hn(Bu_, ® Dy)
i+ji=n

and let d' € ker@ C D, be a representative for d. To construct éz one can first

take a preimage b’ ®d € C; ® D; of b®&d'. Then B(b' @d') =b®d € C; ® Dj lies

actually in Z; ® D;. Its homology class b&® d € Z; © H;(D,) is éx. In other words,

P B: ® Hy(D.) = Hy(Booy @ D.) > Hy_1(Z, D) = @D Zi ® Hy(D.)

i+j=n—1 i+j=n—1

is just the map P(inclusion B; — Z;) ® idg,(p,), which is evidently injective.

i+j=n—1

From (6.3) together with the fact that é is injective, we get short exact
sequences as in following commutative diagram:

0— Hn(B*(g)D*) _é—’ HIL(Z*®D*) I HTL(C*®D*) —0

I% 112
0—PB® Hj(D*) - @Zi & HJ’(D*) _"’@(Zi/Bi) & HJ(D*) —0
i+j=n i+j=n 1+3=n
i+j=n
Hence H,(C. ® D,) = @ H;(C,) ® H;(D.). O]
itj=n

Corollary 6.2 If P, —» M and Q, s N are projective resolutions, then
P, ® Q. @6 M ® N is a projective resolution.
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Next we review the representation of Exty (M, N) as extension classes. Here
M, N are in ,,mod, and n is a nonnegative integer. Let ™(M, N) be the class of
all exact sequences in ,,mod of the form

E: 0 N 5, — . —— By — M —— 0.

Define a relation — on U™(M,N) by E; — FE5 if there is a chain map @,

E1 . 0 N Bn—l s BQ M — 0
H s o]
EQ 0 N Cn_1 e Co M — 0

That is, 8, = idy and 6_1 = idps. The relation — is not an equivalence re-
lation because it’s not symmetric. Let ~ be the minimal equivalence relation on

U™ (M, N) containing —. Tn other words E, ~ Ej provided there exists a chain
Fo....,FfinU"(M,N) with Ey = Iy, Ey = Fy, and for each i = 1,..., f either

Fi—l — Fi or Fz — szl-

Theorem 6.3 Let M, N be in , ,mod and n a nonnegative integer. Then there is
a bijection

P
Extyo(M.N) = U"(M,N)/~.
0
Proof. (Sketch) Let P, =» M be a projective resolution.
Given E € U™ (M, N) we get a chain map f.,

a

=Py — P —— P — =B M 0
[ P
E 0 N B, 1— - —Bj M 0
Since u, : P, — N is a cocycle (u, o @ = 0), we can look at the class

class(py,) € Extpo(M, N). One has now to verify that 6 : class(£) — class(u,) is
well-defined.

Suppose we are given ¢ € Extp- (M, N). Then ( is represented by a cocycle
(: P, — N. We have a commutative diagram

E e B | Py ¢ Pn—l_—’Pn—Q“_)"'_)PO M 0

J ¢ pushout l ‘ H H
N

o 0 N B —— P, _,— - —>F M 0
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where B := N & Pn_l/{(g:(x), —0x) I x € Pn} is the pushout of the diagram
defined by ¢ and 8. The lower row E is then exact. So it is an element in 4™ (M, N).
One has now to show that 1 : { + class(E) is wcll-defined and that 6 and ¢ are
inverses of each other. ]

The products in cohomology come in two sorts. There are outer products,
which make no assumption on the factors. For the inner products some sort of
composition must be guaranteed. We begin with a list of possible outer products.

Suppose that ¢ € Exty (M, N) and v € Ext;5(M', N').

(1) Products by projective resolutions. Suppose that P, —» M and P] = M
are projective resolutions. Then ( and ~ are represented by ¢ : P,, — N and
7 : P! — N’, respectively. Define ¢y to be the class of

n

(®7: (Pa®P)min — Pn@ P, - No N

for the projective resolution P, & P, SR, M ® M.

(1’) Similarly if N 2, I, and N’ Z I, are injective resolutions, and (, v are
represented by (: M — I _,,, 4 : M’ — I’ . then let (v be the class of

(@F MM -1 n®I , > (Lal) .,

(2) Products of maps in the stable calegory. Here we assume that m > 0, n > 0. Let
¢ and v be represented by ¢ € Hom, (Q™(M), N) and 4 € Hom,  (92"(M’), N').
Then let ¢y be the class of ( ® 4 € Hom,, (Q™(M) @ Q*(M'),N ® N') =
Hom,; (™" (M @ M'),N @ N') ¥ Ext]d™"(M @ M',N @ N').

(3) Products by the tensor producl of complexes. Suppose that ¢ and ~ are repre-
sented by

E:: 0 N Am-i Ap M 0
and
E,: 0 N’ B, —— - Bo M’ 0.
Let C be

0 —— A, —— —— Ap M s> 0

6 — ¢, — --- C Co 0
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and D, be
0O——2B,, — «++ — By —— M — 0
0 —— D, —— o —— Dy —— Dy ——— 0.

Then H,(C, ® Dy) = Hpon (C ® D) 2 N & N'. So we have an exact sequence
0 — NN ——— (C ® D)o, — -+ — (C ® Dy)g — 0.

112
Me M

Define (7 to be its class in Ext]:7™"(M @ M',N @ N').
(3') Let Cx be defined by

O"—’N—)Am—l“—)"'%AO——’O

0 Co4> Cfl ——>"'—>C_mv—>0
and let D, be given by

O—N ——B,, —— +++ —— By —— 0

00— Dy — D, —s -+ ——> D_, —— 0.

Then H,(C, ® Dy) = H_,, —n(C, 2 D,) 2 M ® M’. So we have an exact sequence
0 —— (Ch® Dy)o (C, ®D,) ypn—— M @M ——— 0

I
N@N'
whose class is defined to be (.

(4) Yoneda splice products. For ¢ and 7 represented as in (3), let (v be the class
of the sequence (E; @ N') o (M ® E.):

0 - NN - A4, 18N — . 548N —— M@B,_ | — -

N /
M®N'

i > M®By—- MM —0.
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The general principle here is that almost any reasonable product in cohomol-
ogy is the right one. For outer products the principle is expressed in the following
theorem.

Theorem 6.4 All of the outer products (1), (1'), (2), (3), (3'), and (4) coincide.

Proof. 'We prove the theoremn by considering a single (though large) commutative
diagram. Most of the commutativity in the diagram follows from the fact that the
product of two chain maps is again a chain map. As input for our main diagram we
have the following commutative diagram. The notation is taken from the definition
of the products.

We may suppose that the chosen projective and injective resolutions are
minimal.

—Ppy — Py —— Ppa— = P —— M —— 0
0o - O9"M) — Pp,— > P —— M —— 0
o Jum_l luo
E::0 N ’ A,_1— - Ay ——— M —— 0
J/UO J'U—m—ﬁ—l T_m
0 N Iy — - =l vy — Q™M) — 0
0 N i Iy — - _>I—m+l —— Ly =

The chain maps ji«, Vs, 04, and 7, are constructed in the obvious way. The maps
P OV ¢ Py — N and 7, 00_,, : M — [_,, are cocycles representing

¢ = class(E¢).
There is a similar diagram for the cohomology element v € Exty~(M’, N').

It is a substantial check to see that the diagram on the next page commutes.
Start with (4). For (3) we take E¢ and cut off M and take E, and cut off M’
Their tensor product is then a resolution of M & M’. For (2) we take the tensor
product of the resolutions in the second rows of the preparatory diagrams. Finally
(1) is just P, @ P..

Actually the commutativity in rows (1), (2), and (3) and also in rows (1’),
(2"), and (3’) follows from the fact that each chain map connecting these rows is
a tensor product of two other chain maps. The commutativity of (3), (4), and (3")
must be checked more carefully.
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U—w—==0C42 I+u—w—=C42 ur—=_0+41 T4+ruL—=~0+41

IR D —— IRIP— = ITD —— YD — = YRy —— NON 0

f?:é&% 1fs|§®c% s‘céc% 1:735:% : :
e WS ) e
(N w-U ™70 W) wll T N)w U Op @ Ty \ \
o] [ o] H o] |
B Oy (191730) (1o190)
0 SN Tﬂ%\ e Ty o 8 T g TG R ITHY e NN 0
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0= WOW o ONW — "W g~ NOW < NI o NN <

\@k
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' e g Ry N®Y NRTTY (g
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(181130) (roy30) Fd © (W)wD ()5 &
0— WOW t——— dO — - — D — — I @ — MM —0
T ®© ()0 ® O () W3 ® 1T ()5
: : Alz,A ql@*lvﬂ \:.Aw\~® ahv»ﬁ | A .:L.Avnb,v‘ov..\_.v\ﬁ :,.Tii VH\N@*\Q%
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The vertical map (v« @ V. )m+n in the upper left corner in the diagram is the
composition

Prep T p oo p) B om ALy & QY (AL),
t+j=m+n

which factors through Q™™ (M @ M’) & (proj). An analogous statement can be
made for the lower left corner of the diagram. O]

Now we turn our attention to the inner products. In order to make sense of
one of the definitions we need the following lemma.

Lemma 6.5 Let A, B, and C be in ,mod. Then there are natural 1somorphisms
Homy(A @ B, C) =~ Homyg (A, Hom(B, C)) = Homgg (A, B* ® C), (6.4)
and, more generally, for any nonnegative integer n
Extio(A® B,C) = Extyq (A, Hom(B, C)) = Extis(A, B* © C).

Proof. Tn fact, all three vector spaces in (6.4) are isomorphic to the G-invariants
(i.e. G-fixed points) of A* ® B* @ C.

More explicitly, define Homyg(A ® B, C) % Homy,; (A, Hom(B. C)) by
(0(/) (@) ) == flaw b
for f € Homra(A® B,C),a€ A, be B and
0(9)(a ®b) = g(a)(b)

for g € Homp (A, Hom(B,C)), a € A, b € B. We must verify that ¢(f) and 6(g)
are kG-homomorphisms. Let z € G.

(@E)@)e) = (c@(f)e >))<b> (@ (£ ) (="p)
= z2(f(z la®a” r(f a@b))
= (2f)le®b) = flawb) = (¥(f)(@) ().

Similarly, we have (z6(g))(a®b) = (g)(a®b). Moreover ¢, @ are inverses of each
other, and the isomorphisms are natural.

The other natural isomorphism is induced from the natural isomorphism in
Proposition 2.1.
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For the statement about Ext, let P, —» A be a projective resolution of A.

Then P, ® B Bl A Bisa projective resolution of A ® B. By the first part

and the naturality
Homi (Py ® B,C) = Homy ( Py, Hom(B, C))

as complexes. Hence they have isomorphic homology. ]

Here is a list of possible inner products.

Suppose that ¢ € Exty (M, N) and v € Extyo(L, M).

(5) Quter product with composition. Define the product of { and ~ by the compo-
sition
Extye (M, N)® Extio(L, M) = Extl (k, Hom(M, N)) ® Extje (k,Hom(L, ]W))

outer product

Extpg " (k. Hom(M, N) @ llom(L, M))

composition

Ext]5 " (k,Hom(L, N)) = Ext:3"(L, N).
(6) Composition of maps in the stable category. Here we assume that m > 0, n > 0.
Define the product of ¢ and v by the composition
Extpe (M. N) @ Extyo(L, M) = Hom, - (2™ (M), N) ® Hom, - (Q"(L), M)
& H(—)mkc (Qm(]\/{), AN) ® HOIIlkG (Qm+n (L), Qm(]\/{))

SORROSEOR, Homy (7 (L), N) = Extyf (L, N).

(7) Composition of chain maps. Let P. % L. Q. % M, and R. - N be
projective resolutions. Then ( is represented by a chain homomorphism of degree
—m. say (. : Q. — R.. and 7 is represented by a chain homomorphism of degree
—n, say v« : P. — Q. Let ¢~y be the class of the chain homomorphism (, o 7.

(8) Yoneda splice. Let ¢ be represented by

E;: 0 N S Ay —— M 0,
and let v be represented by

!
L

E.: 0 M B, o By L 0.

Then let (v be the class of the sequence

/
L OT

EcocE,: 0-N—-A, | —» - 24 — DB,.1—  —DBy— L0

NS
M
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Here ¢ sends (@4 to (@ (1®7%), p1 is composition, py is induced by composi-
tion, and 11, ¢, 103 are the usual isomorphisms. The map 13 o p; o  is equivalent
to the composition of the chain maps, i.e., it corresponds to (7). On the other
hand ps o (1) ® 1y) is the outer product with composition, i.e., it corresponds
to (5).

We show that the diagram commutes. For f € Hom,(Q™(k) ® M,N),
g€ Ho_mkG(Q"(k) ® L, M), a€Qmk),beQk), | € L we compute
(¥sopiop(f29))(@azd)) = (vs(fo1@9)) (@@ b))
=fo(l®g)la®b®l)=flawgb®l)) and
(PQ o (Y1 ® Y2)(f ®9)) b) (1) (P (W (f)® 1/12(9))) (a® b) (1)

= (11 (@ ota(9) ) V) = (¥1 (@) (g @ D) = flagb@1). O

Corollary 6.7 The outer and inner products are associative.

Proof. Look at (4) for the outer products and at (7) or (8) for the inner ones. [J

Proposition 6.8 The outer products arc graded commutative. So, for example, if
¢ € Extin(M,N) and v € Extio(M',N') are represented by extensions E; and
E.,, respectively, then

class((E¢ ® N') o (M ® E.,)) = (—1)™"class((N ® E,) o (B¢ ® M'")).

Proof Let P, =» M and P! = M’ be projective resolutions. Define

g0 (P, @ P %% Me M) (P oP, <25 M o M)
on homogeneous elements x € P,,, y € P, by
Omin(T®@Y) = (-1)""y ®@z.

Clearly o, lifts the map M ® M’ T2 A e M given by m @ m’ — m’ @ m. We
need to check that o, is a chain homomorphism.
cod(x @y) = U(&r®y+( 1)mx®8y)

= (-1 Yy @ oz + (-1 (-1 Yoy @ a

=(-1)"0Byez+ (-1)"y®dz) = (-1)"Iy®z) =0oc(z ®y).
If { : P, — N represents ¢ and % : P! — N’ represents v, then the sequence
(N® E,)o(E; @ M’) is associated to the cocycle given by the composition

P.9 P, % PlgP. "> N'gN "% N@N,

which is (=1)""{ ®4 if we identify M’ @ M with M @ M’ and N'@ N with N@ N’
by the flip maps. 0
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For M = M’ = N = N’ = k we get the next corollary.
Corollary 6.9 H*(G,k) = Ext;(k, k) is a graded commutative ring.

Remark The ring Exty, (M, M) is in general not graded commutative. In fact,
Exty (M, M) = Homgg (M, M) is in general not commutative.

Definition For ¢ € H"(G,k) — {0}, n > 1, with ¢ : Q*(k) — k representing ¢
let L; := ker ¢, so that we have a short exact sequence

0— Le = Q¥(k) > k — 0.
Lemma 6.10 L. is well-defined up to isomorphism.

Proof. This follows from Proposition 5.5. In fact, the module L, is the third

object in the triangle for the morphism é Hence the isomorphism class of L; in
w:Stmod is determined by (. Since €™ (k) has 1o nonzero projective summands, L
is in fact defined up to isomorphism in . mod by (. ]

Theorem 5.1 suggests the next definition, which we will employ in the sub-
sequent theorem.

Definition For M, N in ,,mod and n € Z let
Ext}(M, N) := Hom, (" (M), N).

The functor Ext ve is called the nt® Tate cohomology. The functor Ext ke can also
be obtained as the nt" cohomology of the complex Homgg(P,, N) where

P, P1 POL)P_1—>P__2——)'--

is a complete projective resolution of M, in that Jy(FPy) = M. Of course,
Extl. = Extgs if n > 0.

Theorem 6.11 ([C2]) Let ¢ € H*(G, k) — {0}, n = 1. If n is even and p > 2
(recall that p = char k), then { annihilates the cohomology of Le. This means that

¢ annihilates EX\tZG(M,LC) and E;QG(LC, M) for any M in ,,mo0.

Proof. We may assume that p] |G|, as there is nothing to prove otherwise.

It suffices to show that ¢ annihilates idy, € Homys(Le, L¢) = ],E;IQG(LQ L¢).
This is because if v € E}RZG(M3 L¢), then ¢y = ¢(idp.07) = (¢ -idr )y = 0 and
similarly for Ext}(Lc, M).
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We have
¢ € H™(G,k) = Extjg(k, k) = Hom, (Q"(k), k) = Extp (2771 (k), k).
As an element of Ext,ch (Q"‘l(k), k), ¢ is represented by the following extension.
Ec: 0—k— QYL — Q" (k) — 0. (6.5)

To see this, let P, <4 k be a minimal projective resolution of the trivial module k.
We have the following diagram (it is an exercise to show that there is no projective
summand in the middle term of the bottom row):

0 —— Q" k) —— P,y —— P o — - > P > k—0

J pushout AN T

0 —— k —— QYL —— Q" k) —— 0
l
0

So ¢ -idy, is represented by the extension

E<®L< : O——>LC -%QAL(LC)@LC — Qn_l(k)@)Lg — 0. (6.6)
12
Q*~1(L¢) @ (proj)

Hence ¢ -idy, = 0 if the short exact sequence (6.6) splits. This is the case if

QO (Le)® Ly = Le & Q" Y(Le) & (proj). (6.7)
Let’s express this criterion for when a short exact sequence splits in a lemma.
Lemma 6.12 A short exact sequence

E: 0 A—2-B C 0
in Lomod splits if and only of B= AG (.
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Proof. If E splits, then clearly B~ A& C.
Suppose that B = A & C. From the long exact sequence

0 — Home(C, A) = Hompe(C, B) % Homua(C, C) > Extlo(C, A) — - -
we get
dimim 3, = dim Homyg(C, B) — dim ker 3,
= dim Hom(C, A & C) — dimim a, = dim Homs(C, C).
So B, is surjective, and any preimage of ide € Homy(C, C) splits 3. O
An alternative approach to the previous proof begins by first noting that we have

class(E) = 6(id¢) € Extyo(C,A). We must show that §(idg) = 0. But this is
obvious because 6 = 0.

Now we continue with the proof of Theorem 6.11. It remains to be seen
that (6.7) holds, or that

Le® Le=Q(Le) @ Q" (Le) @ (proj). (6.8)
To show that (6.8) implies (6.7) note that Q°(L;) = Le.

Consider the complex

C.: 00— Q" k) S k—0 with k in degree 0,
so that H,(C,) = H1(C.) = L¢. The square C. ® C, of C,,

(LS8 k@ QMK) asé fon
S A RN T 7

0 — Q" (k) @ Q" (k) o

k®k—0,
has homology H.(C\, ® C,) =& H.(Cy) ® H,(Cx) = L ® L¢ in degree 2.

Let 0, : C.®C, — C,®C, be the chain map with 0,1, (zQy) = (-1)""ySx
for z € C,, and y € C,. So C, ® C, is the direct sum of the (+1)-eigenspaces
Df = S§%C, and Dy = A2C, of o,.

Dt = G} {x@y—i—(—l)”y@w(xECi,yeCj}
i+j=n
D, = @ {x@y— (-D)y @z ) z e Ciyé€ Cj}
i+j=n
So clearly Df = k® k, Dy = 0, DI = Q"(k) = D;. We need to look at
D @ Dy = (C. @ Cy)2 = Q™ (k) @ Q" (k) = Q?*(k) @ (proj). The exact sequence
0—’Qn(k) —>Pn_1 —>Pn_2—'—> —-—>P0—>k—>0
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n—1
shows that dim Q" (k) = ( 3 (=1)*dim Pn—l—i) +(—1)™. Since projective modules
i=0
have dimensions divisible by p and n is even, we get dim Q" (k) = 1 (mod p). Hence
dim Q" (k) (dim Q" (k) — 1)
2

is divisible by p and dim D5 = 1 (mod p). Since 2?"(k) is indecomposable, we get
that D, = Q" (k) & (proj) and DJ = (proj).

dim D; =

The two subcomplexes D}, D, of C. ® C, are isomorphic to

Df: 0 —— (proj) —2 (k) * .k 0

D;: 0 —— Q(k)® (proj) —— Q"*(k) 0 0,

*

whose homologies are concentrated in degree 2 and with §~ equivalent to é In
particular, we have ima = ker{ = L, so that Hy(DJ) = Q(L¢) @ (proj). Also
Hy (D) =2 Q™(L¢) @ (proj). Putting things together, we finally have that

Le® Lo = Hy(Ca®C) = Ho(DS @ D)
~ Ho(DJ)® Hao(D) = Q(Le) @ Q™ (L¢) & (proj),
which is (6.8). O
The proof of Theorem 6.11 can be adapted to show also that if p > 2 and n
is odd, then no nonzero element ( € H™(G. k) has the property that ¢ annihilates
the cohomology of L;. For p = 2, the situation is far more complicated, and in

general the question of when ¢ annihilates the cohomology of L is an open one.
However, we can prove the following proposition.

Proposition 6.13 Suppose that ¢ € H"(G,k), n = 1. Then (® annihilates the
cohomology of L.

Proof. Assume that ( # 0, as the result is obvious otherwise. Then we have an
exact sequence

0 Le —2— an(k) —— & 0
where ( is a cocycle representing (. Applying EE;G(LC, ) we obtain a corre-
sponding long exact sequence and a commutative diagram

= Exg (Lo k) — Extfip(Le Lo) 2 Extip(LeQ(k) <5 -

¢ ¢ E

- Bt (L, k) A BT (Le, Le) 2 Bxtd™ (Lo, Q7 (k) =5 -
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where the vertical maps are all multiplication by (. Notice that f}?c;’"‘c (LC= Q™ (k)=
E;E,TG_ "(L¢, k), and the connecting homomorphisms are likewise multiplications
by (. If v € E}R?G(Lg,LC), then o.(7) is in the kernel of multiplication by . So
Coo.(y) =0. It follows that oy = p.(83) for some 3 € Ex(77" (L, k). But then
(2 is represented by C(Co7y) = py 0 C(3) = 0, where 3 € E;tzg%*l (Lc. S (k)
corresponds to 3. ]

7 Examples and diagrams

Before proceeding further we pause here to consider some examples. Except
in a few special cases, cohomology rings are very difficult to calculate. Fortunately,
one of the special cases is that of an elementary abelian p-group. These groups play
a major role in the cohomology theory, and so we want to look at their cohomology
rings here. Also we consider certain group algebras whose projective modules can
be represented by diagrams. For these we can compute products in cohomology
as compositions of chain maps. In all of this remember that the base field k has
characteristic p.

As our first example we take a cyclic group of order p™ > 1.

Proposition 7.1 The group G ={g | g?" =1), n >0, has a minimal projective
resolution of the form

(g—1)?" ! (g-1P" 1

kG —2"1 . ko G —L L rG —= Lk 0

X3 Xo X1 Xo

Proof. Tt’s a complex because (g — 1)?" = g?" —1 =1 — 1 = 0. The exactness
follows from the fact that 1,9 — 1,(g —1),...,(g — 1)?" ! is a k-basis for £G. In
fact,

-1
im(g— 1) = EP k(g —1)" =ker(g — 1)*"
i=1
and
im(g— 17" "t =k(g—1)?" " =ker(g— 1).
Exactness at the rightmost copy of kG and the minimality are also clear. O

n e ~
Remark Note that (g —1)P =1 = > ¢' = G. If instead of k we took Z as our
i=0
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base ring, then we would have a projective resolution

G621 S 26 L 16 S 70
. N-1
of G=(g|g"¥ =1) whereG= 3 g'
i=0
Again let G = <g ‘ " =1 > We can write kG as a truncated polynomial
algebra, namely, letting Y — g — 1 we have an isomorphism k[Y]/(Y?") = kG.

This observation leads to the notion of a diagram for a module. In a diagram
we let a vertex represent an element of a k-basis for the module. An edge (or
arrow) represents multiplication by some specified element in rad kG — rad® kG.
Of course, the number of vertices must be the dimension of the module. The labels
on the arrows should denote elements of a basis of rad kG/rad® kG. In the case of
the cyclic group G the basis consists of the single element Y.

Here is the diagram for kG = k[Y]/(Y?"):

agp L]
ly
ai L]
ly
as L] (ai — Yz)
ly
ly
a,pn_l [}

Now let’s look again at the minimal projective resolution in Proposition 7.1.
In diagrammatic form it looks like the following.

X3 X X, Xo k
o]
<+

z\)S \J

— @
°

[oc .

Lemma 7.2 Let G=(g|g"" =1), n>0. Then
0

HY(G, k) = @ kv
i=0

where 0 # v; € H(G, k).
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Proof. Let X, =» k be a minimal projective resolution as above, that is,
p—1

X; = kGag = € ka;. To give a kG-homomorphism X; — k we must simply
7=0

specify the image of ag. Let v; € H*(G, k) be represented by v; : X; — k, ag — 1.

Surely this defines a cocycle, and there are no nonzero coboundaries. W

To obtain the ring structure of H*(G, k), we represent the cohomology ele-
ments by chain maps, which we then can compose. Here is the result.

Theorem 7.3 Let G = <g ‘ gP" =1 >, n > 0. Then

* k[m] if pt =2,
H*(G, k) = '
@ {khl*'h]/('h?) if p" > 2.

with deg~; = 1.

Proof. The chain map for v, is given by 42 : X;1o0 — X, ap — ag for i > 0.
Hence v;v2 = ;42 for ¢ > 0.

If p™ = 2, then we get vy = ;41 for ¢ > 0, by a similar chain map in
degree 1.

It remains to be seen that 47 = 0 if p™ > 2. For this we construct the chain
map which covers 7;. In diagrammatic form it looks like this:

X3 Xo X3 Xo k

~_

— e
[ J

|.(_
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Therefore )
X _m . X, — 2k
ag +— apn_o — 0 if p* > 2.
So 7% = 0 in this case. O

Now suppose that G = (y1,...,yn) = (Z/p)" is an elementary abelian
p-group. For each ¢ € {1,...,n} let H; := (y;) C G, so that G = Hy; x --- X H,.

Proposition 7.4 Let A, B be groups. Then k(A x B) £ kA®Q kB.
Proof. The isomorphism is given by (a,b) —a®bfora ¢ A, b€ B. O

Note that for G elementary abelian as above, we may regard
K, 2k QkQEH, kR - ® Kk

as a kG-module in which y; acts in the usual way, and y; acts trivially for j # ¢.

Proposition 7.5 Let X 9 L k be a minimal projective resolution of the trivial
kH;-module k. Then X, = Xil) Q- R Xin) L8 Ben g Q--- Rk is a minimal
projective resolution of the trivial kG-module k.

Proof. The Kiinneth Theorem shows that X, has the right homology. So we need
only note that for each m

— (1) (n) ~
Y- @ xPseexls @ ko
j]+"'+j’n:m j1++jn:m
is a projective (free) kG-module.

The minimality follows from the fact that 9(X,,) C rad(X,,—) for all m > 0.
That is, rad(X,, 1) is the intersection of the kernels of all of the homomorphisms
’7’](-11) K--® 7](-:) : Xopm—1 — k with 31 + -+ 7, = m — 1. But it is easy to sece
that (fy](.ll) R ® 7](,:')) o =0. If X, were not minimal, then we would have that
X, = P, @ Q, for P, a minimal projective resolution and @), an exact complex of

projective (free) modules. If @, were not zero, then it would have to be the case
that 9(Q.) C rad(@s,—1) for m the least integer with Q,,,—; # 0. ]

Theorem 7.6 Let G = (Z/p)™. Then

H*<G k')g k[nl;-“ann] pr:27
kiClw-an}®A(7717---777n) 7fp>2;
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where n1,...,1m, are in degree 1 and (1, ...,(, are in degree 2. Here

A, mn) = km, o) [/ (0 mimy +mimi |7 =1.....n)

18 an exterior algebra.

Proof. We use the minimal projective resolution X, — k with

_ (1) , (n)
KXm = @ le 8”'®Xjn

j1+"‘+j17 =m

as in Proposition 7.5. So Homgg(X,,. k) is generated as a k-vector space by
a set of elements indexed by the collection of all n-tuples (ji..... Jn) of non-

"
negative integers with Y~ j; = m. These generators correspond to the products

=1
fyj(-ll) & ® Wj(':) where ,)j(7) € H’i(H;, k) and with fyj(.:) represented by the cocycle

Xj(-:) — k, ap — 1.
Each ’Yg('j) is also represented by a chain map xO o x ot degree —j;.
Hence ’yj(-ll) @ ® 7(»:)

; is represented by the product of the chain maps. For the
notation we want

i Xs _proj, X((,l) Q- ®X(()i—1) ®Xfi) ®Xéi+1) Q- ® X(()nin

El®"'®57—1®’7§i)®5i+1@"‘@En k

and

G X, _proj, Xo(l) 2 _'®X(gi—1) ®X§i) @Xéi+1) & .”®X(gn)

g1®- Qe 1®’7§i)®5i+1 D Qen L

So the presentation of H*(G, k) follows from Theorem 7.3 together with the com-
mutativity relations. ]

Corollary 7.7 Let G = (Z/p)". Then H*(G,k)/rad H*(G,k) is a polynomial
ring in n variables.

Proof. If p =2 thenrad H*(G,k) = 0 and H*(G, k) is a polynomial ring in n vari-
ables. If p > 2 then, in the notation of Theorem 7.6, (11, ..., n,) is a nilpotent ideal,
in fact, (n1,...,mn) =rad H*(G, k). Hence H* (G, k)/rad H*(G, k) = k[C1,. .., (n)
is a polynomial ring in n variables in this case, too. U
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We can draw diagrams for some of the modules. For example, suppose that
we have p = 2 and G = (Z/2)? = {y1,y2). The diagram for the free module
kG = k|Y1, Ys]/(YE,YE) looks like this:

1
® ®
NN VAN
Yi e o Y5 or simply ° °
2N\ ST NS
[ J [ J
"y

(Y7 is g1 + 1, and Y5 is y2 + 1.) Here is an example for another kG-module. It is
the diagram for the module Q2 ~3(k).

(23] as as
[ ]

/.\ / \ /.\ Ylai - bi, Ygai = bi—l—l for i = 1,2,3,
. . . . Yib; =0, Yab; =0 for j=1,....4.

b1 b2 b3 b4

So a minimal projective resolulion of the trivial module looks like the follow-

ing.
7N ™~ 7N 7N N NN
— e e eDe e — @ e e [ — o e — e
NS NS NS NS NS NS
e N S N e
NSNS NS

Next let’s look at the dihedral group of order 8,
G=Ds={(z,y|a*=y"=(ay)" =1)
for p=2.Let A:=x+ 1, B:=y+ 1. Then one computes that
kG = k(A,B)/(A?,B?, ABAB + BABA)

and
rad kG = (A, B).

Herc k(A, B) is the polynomial ring over £ in the noncommuting variables A and B.
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Again, our aim is to determine the cohomology ring by looking at diagrams.
The diagram for the free module kG looks like this:

[ ]

A\/ \B

® [ ]
Bl 1A

® [
Al B

® [

N,

So a minimal projective resolution of the trivial module £ is a splice of the se-
quences

w1
.
U v A\/ \B
. ° . .
Bl A Bl .\
[ ] [ ® ® — [ ]
Al B Al B
. . ° .
B> . <4 B> o <y
(where u — Aw; and v +— Buw)
Ty o
[ ] [ ]

T t Ax/ \B Ax/ \B U v
° . . . . ° ° °
Bl 14 Bl 14 BL 14 Bl 14
° e v o o & e e — % e °
Al s 1B Al 1B Al 1B Al 1B
[ ] [ ] [ ] [ ] ® ® [ ] [ ] ®
B\.[AB\.{A B\.{A B\.{A B\.{A

(where 1 — u, 22 v v, 7 — Axy, s — BABx) + ABAxs, and t — Buxs)

etc.

The diagram on the next page, where for simplicity the labels A and B on the
arrows have been omitted, shows the chain map which represents the cohomology
element a, given by

ap : PP — &k
r; +— 1

9 +—— 0
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Py

Py

o o_—)o—)o
._)._). ...................
| N T
oe °
W A
e e —e e >0 e
4
- \
e —>e—e oy e >e e
Je . o
N A N [
e >0 e
o >0 —e
Y
[ ]
A
. ...........................................................
pV
°
A
= e >0 e
e >e e Y N
| x
Se *
A
e —>e e e —e
4
& °
b,
e >0 e _ e >e e
s LN A
g. AP @ @
N s B
®e >0 e <8 e Ve e
A
EE. ......................... >.
\
e —H>e e e e e
ey .
A
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Analogously, we have b; represented by

b1 . P1 — k
ry 0

Ty b+ 1

The diagram reveals that a;b; = 0. Finally, ¢ is given by

co - Py — k
yp — O
ya — 1
ys — 0

Continuing along these lines we can prove the following theorem.

Theorem 7.8 [fchark =2, then
H*(ng) = k[al.bl,cﬂ/(albl)

where a; and by are in degree 1, and co is in degree 2.

Our next example is

G=A,= <x,y,z ‘ =y =(y)? ==l =y oyt = .ry>ﬁ

the alternating group on 4 letters. Here. for example, x = (1 2)(34). y = (1 4)(2 3).
and z = (1 2 3). We assume that k has characteristic 2 and that it contains a
quadratic extension of its prime field. So we have w € k with 1 +w +w? = 0, that
is, w is a primitive 3'¢ root of 1. Let

2
€= Y w ¥z fori=0/1.2
j=0
These elements are orthogonal idempotents (e;e; = 6, ;6,) and ey + €1 +ex = 1.
Moreover ze; = w'e;. Now let

U =&+ wgy + wxy,
U = +wy + ngy,

uz =1+ +y+xry=uuy = ugu.

Note that zu;z7' = wlu;.
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The indecomposable projectives look like

€n €1 €
. ° .
u]/ \U'z ul/ \uz u1/ \w
Ui1€p ® U2€qQ uij€e; @ ® Ugey ujey o ® U2€2
ury S urN, S uz N\ S wm
. ) .
U3€n U3z€] U3Co

Here we have three simple modules, which we denote by their z-eigenvalues,
namely, 1, w, and w?.

At this point it is appropriate to introduce a new style of diagram. We let
the vertices of the diagram be simple kG-modules, and the edges (or arrows) are
extension classes between the vertices. That is, an edge is a class in Ext, (M, N)
where M and N are the vertices. So the indecomposable projectives for kA4 look
like

1 w w?
N\ N\ SN
w w? w? 1 1 w
NS NS N

1 w w?
kA480 ]CA461 ]CA462

Then it can be checked that a minimal projective resolution for G = Ay is

- —kGeg & kGer © kGes & kGey — kGey O kGeg @ kGey
— kGe; @ kGeg — kGeg — k — 0

and one can deduce that the cohomology ring is given as described by the next
theorem.

Theorem 7.9 [If Fy — Fk, then
H* (A1 /m) = k[ag, bg, C3]/(CLS + b3(¢3)

where the indices denote the degrees of the elements.
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Next take G = S4, p = 2. Then kG has two simple modules, £ and M with
dim M = 2. The indecomposable projectives look like

Theorem 7.10 Ifchark = 2, then
fI*(S4, k‘) = k{aq s bg, 63]/((1163)

where the indices denote the degrees of the clements.

As a last example we take G = As, p = 2, and F4 — k. Then the principal
block of kG has three simple modules, k£, M;, and M, of dimensions 1, 2, and 2,
respectively. The indecomposable projective modules look like

k M, M,
7N | |
M 1 M. 2 k k
l l | l
k k M 2 M 1
l l l l
Mo M, k k
NS l l

k M, Ms

Theorem 7.11 If 4y — k, then
H*(A5, k) = k[ag, b3, 63]/((13 + b363)

where the indices denote the degrees of the elements.

For further information on diagrams and cohomology see the book by
Benson [B1] and the paper [BC].
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8 Relative projectivity

Throughout this section V' denotes a module in . mod.

In this section we develop techniques and results concerned with projectivity
relative to a module. We shall see that this is a generalization of the more standard
projectivity relative to a subgroup or set of subgroups. The latter plays a role in the
theory of blocks for group algebras and so has a vast literature. The projectivity
relative Lo a module was first seen in an unpublished manuscript of Okuyama [O].
Its definition, however, is just a special case of the relative homological algebra
that can be defined for a projective class of epimorphisms [HS, Chap. 10, Sect. 1]
or for a pair of adjoint exact functors [HS, Chap. 10, Sect. 4].

The reason for our interest in the subject will become clear in the next section,
where we will consider the special case of projectivity relative to a tensor product
of L:’s for ¢ € H™(G. k) — {0}. n = 1. We will show how to represent ideals in the
cohomology ring by exact functors which come from relative projective resolutions.
We begin with some definitions and easy results.

Definition A module M in ,,mod is termed V-projective or relatively V-pro-
jective if QO(M) is isomorphic to a direct summand of V ® N for some suitable
module N in ,,mod. The module M is called V-injective or relatively V-injective
if and only if it is V-projective.

Let P(V') denote the collection of all V—pro jective modules in ,mod.

An exact sequence E: 0 — A 5 B o 0 in ,,,mo? is said to be V-split
HfVeE: 0>Ved 2% yven 2 veo— 0 splits.

Remark If M is not projective, then M is V-projective if and only if M |V @ N
for some module N in ,,mod.

Proposition 8.1
0) IfU € PV then P(IT) C P(V).
(ii) P(V)=P(V").
(iii) For any wnteger n. P(V) =P(Q™"(V)).
) If ptdimV, then P(V) =, ,mod.
)

(1v

(v) Let P (=P(0)) be the collection of all projective modules. Then P C P(V),
and if V is projective, then P = P(V).

Proof. (i) is obvious; in fact, Q(U) (hence U | (V ® A) @ (proj)) implies
QAN U % B = QO(AI) Vo AR B because Q%(M) is projective-free.
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(i) Recall that V |V & V* &V (Proposition 2.3). So V is V*-projective and dually
V* is V-projective, whence P(V) = P(V*) by (i).

(iii) Proposition 4.4 shows that Q*"(V) |V & Q*(k) and QY(V) | Q"(V) ® Q" (k).
So (iif) holds.

(iv) follows from Lemma 2.2.

(v) Both statements are obvious: 0 € P(V'), and if V is projective, then Q°(V') = 0.
O

Note that (iv) gives a weak version of Corollary 1.6.
Corollary 8.2 If p||G| and V is projective, then p| dim V.

Proposition 8.3 IfE: 0 - A — B — C — 0 is V-split and M s V-projective,
then M@FE: 0 > M®A—>MKB — MQCC — 0 splits.

Proof. QU(M)|V ® N for some module N in ,,mod. Hence the exact sequence
O%M) ® E is a direct summand of V @ N ® E. which splits. So M ® E splits. O

The above proof is a bit more complicated than what we have written down.
The problem is that it depends on the naturality of both the tensor product
and the splitting. Another way of looking at it is the following. Suppose that
V¥ N = M & M'. Now we know that the class class(V* @ N ® F) =
idy.gn -class(E) € Ext,o(V @ N ® C,V* ® N @ A) is zero. Then so also is
its projection to Ext;,(M & C, M @ A) which is class(M ® E).

Corollary 8.4 Let E: 0 —- A — B — C — 0 be a short exact sequence in
wcmo0. The following statements are equivalent.

(i) E is V-split.

(i1) F s V*-split.

(iii) E s Q™(V)-split (for any integer n).

Proposition 8.5 Suppose that we have a diagram

M

o

¢ — 0

0 A B *

with exact V-split row and with M V-projective. Then there exists a kG-homomor-
phism p: M — B with Bu = 6.
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Proof. We have the [ollowing commutative diagram.

Homyg (M, B) B

Homkg(M, C)

I 12

Howye (k. M* 9 B) 27 Hompg(k, M* @ C)
Since M is V-projective, M™ is V™-projective, hence V-projective by Proposi-

tion 8.1 (i1). So 0 — M*®A — M*®B 289 ArreC — 0 splits. Therefore (183).

is surjective and so is g.. So there exists y € Homgg (M, B) with 8 = 3, (u) = Bu.
(]

Remark The proposition above has a dual counterpart. That is, if we are given a
diagram

0 —— A - B C 0

I
M

with exact V-split row and with M V-injective, i. e., V-projective, then there exists
a kG-homomorphism ¢ : B — M with pa = .

Definition A V-projective resolution of a module M in ,,mod is a nonnegative

complex P, of V-projective modules together with a kG-homomorphism Py —» M
such that the sequence

PS5 P3P pS M0
is exact and totally V-split.

Totally V-split means that all of the exact sequences

=

0 —— kere = - M —— 0,

0 —— kero, » P, o imgo; —— 0 (1=1,2,...)
are V-split.
9
Similarly. there is the notion of a V-injective resolution M — Q,.

Lemma 8.6 The cxact sequence

Vev: — . k 0

0 —— kerIr

s V-splil.

Proof. This follows from Proposition 2.3 together with Lemma 6.12. U
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Proposition 8.7 Every module M in ,,mod has a V-projective resolution.

Proof. The sequences
0 —>kerTraM - VoV @ M — M — 0.
0 - kerTrkerTroM — V@ V*®@ker Tr@M — ker Tr M — 0,

arc V-split. So by splicing these sequences together we get a V-projective resolution
of M:

s —— VRV QkerTr M — VIV*QAM— M —0

NS NS
(ker Tr)®? @ M ker Tr @M
If M is V-projective we can do better, namely.
0 M B g 0
is a V-projective resolution. - U

Theorem 8.8 (Comparison Theorem) Let P, —» M and Q. P M be two
V-projective resolutions of M in ,mod. Then there is a chain map

s (Pe =5 M) — (Q, —» M)

which lifts the identity on M.

Proof. Assume by induction that we have constructed pgp....,u;—;1. so that we
have a commutative diagram

0, oF c
S Pi Pi—l PO M 0
- o
871Q~1 alQ [
Qi Qi—1 Qo —— M —— 0

Then p;_q restricted to ker Bip_l >~ im 8{3 induces fz; 1 @ im 8ip — im QQ. So we
have a commutative diagram

0 ——— kerd/ —— P ——— imdF —— 0
J{Uq J{[Lifl
0 — keré?f’2 —_— @y ——— im@? — 0

We get ju; because F; is V-projective and the bottom row is V-split. d
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Proposition 8.9 Lvery module M in ,mod has a minimal V-projective resolu-
tion and a minimal V-injective resolution.

The last proposition can be proved using arguments which are very similar
to those in the proof of the existence of minimal projective resolutions.

Definition For M in ,,mod and n € Z define Qf (M) as in the definition of
Q" (M) on page 14, but using V-projective and V-injective resolutions instead of

projective and injective resolutions. Qf,(M) = QF (QV”(M)) is the sum of the
non-V-projective direct summands of V.

EXERCISE 8.1 Show that a V-projective resolution P, ~%» M is minimal if and
only if for all n > 0, im d,, has no nonzero V-projective direct summands.

A consequence of Exercise 8.1 is the following lemma.

Lemma 8.10 Qf (M & N) = QF (M) ®© QY (N). More generally, the direct sum of
two manimal V-projective resolutions is a minimal V-projective resolution for the
direct sum of the modules.

Lemma 8.11 If M is indecomposable, then so is QXL (M) for any n for which
QL (M) £ 0.

e

Proof. QU (M) = A ¢ B implies that M Q" (Ae B) @ (V-proj) =
Q" (A) @ Q" (B) & (V-proj). O

A few notes on tensor products will be of value later. The first is very easy
to see.

Proposition 8.12 If P, =» M is a V-projective resolution of M in comod, then

for any module N wn ,mod, P, & N Bl M&Nisa V-projective resolution.

Corollary 8.13 Let Vi be a V-projective cover of the trivial module k. Then
PV) =P(Vi).

Proof. Clearly Vi is V-projective. But by definition 0 — kere — V, 5 k — 0 is
V-split. So V' is a direct summand of Vi @ V and hence V is Vi-projective. U

Proposition 8.14 If P*(l) = M, and P*(Q) L2 M,y are Vi- and Va-projective
resolutions of My and Ms, respectively, then Pil) ® P*EQ) £1®e2 M, @ My is a

Vi & Va-projective resolulion.
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Proof. Tt is easy to see that Pj(l) ® Pj(z) is V1 ® Va-projective for any ¢ and j. So

we need only notice that V; ® V5 ®P*(1) ®P*(2) =~z P*(l)) (Vo g P*(Q)) is totally
split. [

9 Relative projectivity and ideals in cohomology

In this section we investigate methods of representing ideals in cohomology by
exact scquences. Parts of the section will appear in joint work with Wayne Wheeler
[CW] and with Chuang Peng [CP]. The foundation for our investigation was laid
in the results at the end of Sect. 6. The point is that we will characterize ideals
in cohomology by the modules in ,mod whosc cohomology the ideals annihilate.
To make the investigation more meaningful we begin by quoting the theorem on
finite generation of Evens and Venkov (see [E]). One of the main facts which we
use is that the ideals in cohomology are finitely generated.

Theorem 9.1 (Evens, Venkov) H*(G, k) is a finitely generated k-algebra. More-
over if M and N are in ,mod, then Extyo(M.N) is a finitely generated module
over H*(G, k).

Remark Of course, as everywhere in this text, G is a finite group. But the theorem
holds if the coefficient ring k is any commutative Noetherian ring. In particular,
Theorem 9.1 says that H*(G, k) is a Noetherian ring. and hence its ideals are
finitely generated.

If p =2, then H*(G,k) = k[z;,....2,]/] where we may choose the finitely
many gencrators i, ..., &, to be homogeneous elements (of various degrees). The
ideal I is then homogcneous, i.e., it is generated by the homogeneous elements
that it contains. For p > 2 the elements of odd degree anticommute. So we have
H*(G. k) 2 K[zy,...,2,] @ Ay1,...,ym)/] in this case, where z;,...,z, have
even degrees and yy,...,ym have odd degrees. The ideal I is again homogeneous.

Definition For a module M in ,,mo?, let J(AM) be the ideal in I*(G, k) gen-
erated by all homogeneous elements of positive degrce which annihilate the coho-
mology of M. That is, if ¢ € H”(G k), n > 0, then ¢ € J(M) if and only if ¢

annihilates ExtkC(M N) and Ext (N, M) for any module N in ,,mod.

We have noted before that a homogeneous element ¢ of positive degree is in
J(M) if and only if ¢ -idas = 0 where id s is the identity element in Ext} (M, M).
Thus for M # 0, J(M) is the annihilator in H*(G, k) of Extp;(M, M), and an
element ¢ € H*(G,k), n > 0, is in J(M) if and only if ¢ annihilates the ordinary
cohomology Exty (M, N) and Ext} (N, M) for any £G-module N.

Our first result (the next lemma) is obvious in light of what we have done so
far. However, a lot of what we do in this section is a generalization of the result.
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Lemma 9.2 Let ( € H"(G, k) — {0}, n > 1, and let—cf. (6.5) on page 39—

Ee: 0—k— QL) — Q' (k) — 0
be a sequence which represents ¢ € H*(G, k) = Extp. (k. k) = Extyo (Q7 (k). k).
Then L represents the ideal (() C H*(G,k) in the sense that () C J(M) if

and only if Ec @ M splits. Moreover E; @ M splits if and only if L ® M =
Q" (M) 2 QM) & (proj).

Proof. E: ® M represents ¢ - idps. The last statement follows from Lemma 6.12.
U

Definition An element ¢ € H"(G,k) — {0}, n = 1, is productive provided
¢ e J(Le).

We know from Theorem 6.11 that if p > 2, then all ( € H"(G, k) — {0},
n > 1, n even, are productive,.

Proposition 9.3 Let ¢ ¢ H"(G,k) be a productive element. Then a minimal
L¢-projective resolution of k has the form

g .
(pro) (proj) (proj)

LML) o 7T (Le)

- @D — k — 0.

Moreover Q0 (k) = im 0; = Q=) (),

Proof. Beginwith E; : 0 — k — Q7 (L) — Q" (k) — 0. Since ( is productive,
E. is L¢-split by Lemma 9.2. Translating by Q=" we get a sequence

0+ QI (k) — Q7" (Le) & (proj) — k — 0

which is also L¢-split. Moreover Q7" (L) @ (proj) is L¢-projective. By further
translating by Q7" we get L-split exact sequences

0 —— Q2 (k) —— 01 (Le) & (prof) —— QITHE) —— O,
0 QI Q2F(L) & (prof) ——— Q2 (K) —— 0,

etc., all with L¢-projective middle terms. So splicing these together we get the
L¢-projective resolution

P(Le) 9, YTPM(Le) 5, (L)
= ham— EB

- — — &P — k=0

N

(proj) (proj) (proj)

as desired. The minimality of the resolution follows from the fact that Q1) (k)
is indecomposable. O
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Now suppose that we are given homogeneous elements (; € H" (G. k) — {0}.
n; 21, fori=1,...,n. For each « we have an exact sequence

0 —— Q™ (k) SO ke (proj) — = Q7 YL¢e) —— 0

where (; represents (; € Homy ., (Q™ (k), k).

Since each ¢; is surjective, so is the tcnsor product o) £ -+ 8 7,,. We get an
exact sequence

6 15---:(n . 01X ®0n - —
OHU(Cl,...,Cn)Mk@(prOJ) £E ®Q YLe)— 0 (9.1)
i=1

which dcfines the module U((y,...,(,). Note that the o;'s are well-defined up
to the addition of homomorphisms which factor through projectives. Hence the
isomorphism class of U((y,...,(,), being the third object in the triangle of the
morphism o7 @ - -+ ® 0,, is well-defined in the stable category.

There is another way of defining the module U((;.....(,). Let C((,). be the
complex

C(G)w: 0— Q" (k) S ko (proj) — 0 with k & (proj) in degree 0.

Then H,(C(¢:)+) = Ho(C((i)«) = Q7 (Le,)- Take the tensor product

C*::®C(@)*: 0—-Ch— - —C—0
i=1

with

Co = ko (proj),

G = Pam(k) s (proj),

i=1
i T

Cn = Q= (k)& (proj).

and H,(C.) = Hp(C.) 2 @ Q7 1(L,). We define D.. to be the truncated complex
=1
D, : 0—D,q—--—Dy—0

where D; = C;31 and for ¢ # 0 the differential D, 9, D;_1 is the same as
Cit1 9, Ci.
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Lemma 9.4 H.(D,) = Ho(D.) 2 U(C1,...,(n).

Proof. The first row in the following diagram is exact.

0 —— 0 — - —( Cop ZEEI, QL) — 0
=1

H H

0 —— Dn_l—ﬁ _’DQ — 0
It follows that Hy(D,) = im[Cl R CO) Sker(o; @ - ®a,) =U((r,...,.¢). O

Now we have a triangle shift of the sequence (9.1) as follows:

E(clv--- -,Cn) : O I k —U—> ®Q—1(LC1) - Q_l (U(<1a7<n)) - 0

Theorem 9.5 The sequence
E(G..... G 00—k —»(X)Q (Le,) — QUG- Cn)) — 0

represents the ideal I := (Cy. ..., () in the sense that, for any module M in ,,mod,
E(C1y.--.Cn) ® M splits of and only if I C J(M).

Proof. For cach i we have a commutative diagram

/

E;: 0—k —2— Q7 YL;) — Qe 1(k) — 0
| v k
E(G. . C): 0= D28 ®Q HL¢) — QU4 6n)) — 0

where y; = 012+ Ro,_; R1@0], % -®0o,, and v; is induced from p;. So we see
that E; is the pullback of E((3.....(,) along v;. Thercfore if E((y,...,(,) @ M
splits. then so does E; & M, and hence (; € J(M) in this case.

Now suppose that (;..... Cn € J(M). Then for each i, F, ® M splits. Let
Q' (L¢,) & M =5 M be a splitting map for M 2B - Y(L¢,) ® M. The compo-
sition

1®§9n 1
—_—>

(7;;8?191(L<i))®M 28n, (tggz—l(Lci))®A{_

g QN L) M 2 M

is a bplitting map for (120, ®1)c(1R0,_;@1L)o---0o(lxoy®1)o(o] ®1)
o180, 8L

ol
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Lemma 9.6 If( € J(M), then ( € J(M ® N) for any N.
Proof. If B ® M splits, then so does E: £ M & N, O

Proposition 9.7 Suppose that (i,...,(, are productive elements, and let
n

V=@ L¢,. Then the sequence
i=1

1=

E(Cl)"'ugn) : 0—k M®Q—I(LCL) - Sl_l(DY(Cla"an)) — 0

i=1

18 the first step in a V-injective resolution of k.

Proof. Since ¢; is productive, (; € J(L¢,) € J(V). Soby Theorem 9.5, E(C1,...,(y)

n
is V-split. Also it is clear that @ Q7 1(L¢,) is V-projective. O
1=1
Proposition 9.8  Suppose that (q.....(, are productive elements, and let
n
V = QL. Then a module M in ,,mod is V-projective if and only if
=1

L Con € J(M),

Proof. If M is V-projective, then F((p,...,(,)®@ M splits by the last proposition.
So by Theorem 9.5, (y,...,(, € J(M).

The converse follows by the reverse argument. ]

Definition An ideal I C H*(G, k) is called productive if it is generated by pro-
ductive elements. Let (1, ...,(, be productive elements and I := ((3,...,(,) the

productive ideal they generate. A module M in ,,mo? is termed I-projective (or
n

I-injective) if M is @ L¢,-projective. (The lesson of the last proposition is that
i=1
I-projectivity is independent of the choice of productive generators.)

Now supposc that I is a productive ideal generated by the productive ele-
ments C1,...,Cp. Let By : 0 — k& 25 Q-YL;) — Q~YU;) — 0 be the first step
in a minimal I-injective resolution of k. So U((1,....(n) = Uy & U’ where U’ is
I-projective. The module Uy is the object in the triangle

U 2k 25 QY (L) — 7N (U).
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Lemma 9.9

(i) The module Ur depends only on I (and not on the choice of productive gen-
erators) and 1 is unique up lo the addition of a map that factors through an
I-projective module.

(i) If¢ € H™(G.k) is a productive element, then we have (Ui¢y, 0cy) =(Q2" (%), ().

Proof. Part (ii) and the independence statement in (i) have already been dis-
cussed. For the uniqueness we need only note that o7 : k& — Q '(L;) is an
I-injective hull of £ and then use the comparison theorem for I-injective mod-
ules. ]

Proposition 9.10 Let I C J be productive ideals. Then there is a commutative

diagram

U, —

ol

UJ—OJ—>k

The map 05 5 is unique up to a morphism which factors through an I-projective
module.

Proof. We have I C J C J(L;) and hence L; -—and therefore also Q~1(L;)-—are
I-projective (or I-injective). So we get a commutative diagram

0 k QO YL;) —— QYU) —— 0

H L K

Q1 (Uy) —— 0

Here p exists by the [-injectivity of Q7!(L,). The map v is induced by u. Let
QI:J = Q(l/)

If we chose p’ instead of p. then we would have the commutative diagram

0 k OYL,) —— QY U) —— 0
0 J{,u—y/ / lu—u'
0 k QYL —— QNU) —— 0

The uniqueness of 87 ; then follows by general nonsense. Ol
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10 Varieties and modules

We know that H*(G, k) = Exty(k, k) is a finitely gencrated k-algebra.
Definition Let Vg (k) be the maximal ideal spectrum of H*(G, k).

So Vi (k) is the set of all maximal ideals, topologized by the Zariski topology.
That is, if I is an ideal in H*(G, k), then the set Vi;(I) of all maximal ideals which
contain I is a closed set in the topology. Moreover every closed set has this form.

Example Suppose that the field & is algebraically closed. If G is an elementary
abelian p-group, say G = (Z/p)", then H*(G,k)/rad H*(G. k) = klr1....,x,]
is a polynomial ring in n generators. So Vg(k) = k™ in this case. For any
a = (ay,...,a,) € k™ there is a corresponding maximal ideal m, in the poly-
nomial ring, namely,

m, = {f(:cl,...,a:n) cklry,..., 2, ‘f(a) :0}.

That is, m, is the kernel of the homomorphism k[z,,...,x,] — k given by evalu-
ation al the point a.

If H C (G is a subgroup, then we have a restriction homomorphism
resa, o

H*(G, k) —== H*(II, k). For suppose that P, —» k is a projective £G-resolution
of k. Then it is also a projective kH-resolution by restriction of cocflicients. This
is because kG is a projective kH-module. So we have an inclusion of complexes

Homyg( Py, k) — Hompgy (Py, k).
The induced map on cohomology is the restriction map.
Now if m € Vi (k) is a maximal ideal in H*(H. k), then its pullback
resa}H(m) ={¢e H(G,k) | res, i (¢) € m}
is a maximal ideal in H*(G, k). Hence we have a map of varieties
resg. g ¢ Va(k) — Va(k)
sending m to resa’lH(m).

The following theorem of Quillen has been fundamental for the development
of the theory of varieties and cohomology rings. We do not give a proof here but
rather refer the reader to Evens’ book [E| for a readable Lreatment.

Theorem 10.1 (Quillen’s Dimension Theorem) Let A,(G) be the set of all
elementary abelian p-subgroups of G. Then

Vak)= | J resg 5 (Ve(k)).
EcA,(G)
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One way to view a maximal ideal m € Vi (k) is to think of it as the kernel
of a nonzero homomorphism H*(G, k) 2 k, where k is an algebraic closure of
k. After all, H*(G,k)/m is a field which is algebraic over k, and hence it can be
embedded in k. From this point of view, Quillen’s Theorem says that every such
homomorphism « is a composition of the form

resG. g 3

H*(G. k) —% H*(E,k) 5k
for some E € A,(G).

As an example consider G = Dg = (z,y | 2? = y* = (xy)* = 1), the dihedral
group of order 8. This group has two maximal elementary abelian 2-subgroups:
Ei = (z,(zy)*) and E; = (y, (xy)?). For chark = 2, the cohomology ring (see
Theorem 7.8) has the form

H*(G/ k) = k[al,bl,(’g]/(albl).

Hence there are two minimal prime ideals (a1) and (b1), and these correspond
to the kernels of the restrictions to the maximal elementary abelian 2-subgroups.
That is, H*(G,k)/(a1) =2 k[b1,cz2] is a polynomial ring and is embedded by the
restriction as a subalgebra of H*(E;, k) for one of the E;’s.

Quillen’s Theorem has an equivalent formulation by Quillen and Venkov,
which says that an element of H*(G, k) is nilpotent if and only if its restriction to
every elementary abelian p-subgroup is nilpotent.

Definition For a kG-module M let J(M) = Jo(M) € H*(G, k) be the annihi-
lator of the cohomology of M as before (cf. page 58). Then let Viz(M ), the variety
of M, be the variety of the ideal J(M). That is, V(M) C Vi(k) is the set of all
maximal ideals which contain .J(AT).

The main issne of this section is to develop some of the properties of the
variety of a module. First we state a basic lemma.

Lemma 10.2 Let M be a kG-module, and let ( € H™" (G, k). If Va(M) C Vi (Q),
then ¢ € J(M) for some m, that is, ( € rad J(M).

Proof. The point is that the relationship between ideals in a Noetherian ring R
and their varieties goes as

[CJ=V({I)2V(J)=>radl C rad J.

This is basic commutative algebra. That is, if V(J) C V(I), then since the variety
of R/J is V(J) we have Vi, ;(I +J/J) = Vg, ;(0) = Vr(J). So T+ .J/.J is in every
maximal ideal of R/J. and hence it is in the radical of /2/J. The result follows
from the fact that the radical ol a Noetherian ring is nilpotent. U
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Lemma 10.3 For any module M in ,mod, Vg(M) = Va(M*) = Vg (Q"(M))
for all n.

Proof. We need only note that

Extye(M, M) = Exte(M™, M*) = Ext}q (% (M). Q" (M))
as H*(G, k)-modulcs. O
Lemma 104 If L — M — N — Q7 YL) is a triangle in LoStmod, then

Va(M) C V(L) U Va(N). (And by triangle shifting it then follows that also
Va(L) CVa(N)U Ve (M) and Va(N) C V(M) U Vg (L).)

Proof. We have a long exact sequence
> ExtP L, ) - ExtPL(N, ) — Extn (M. ) — Extya (L. ) — -
From this we see that

J(M) 2 J(L)- J(N) 2 (J(L) n J(N)".

Proposition 10.5 V(M) = {0} of and only if M is projective.

Proof. 1f M is projective, then surely Vg (M) = {0}.

So suppose that Vg(M) = {0}. Let S be any module in ,-mod. Because
Ext; (M, S) is finitely generated as an H*(G, k)-module and H*(G, k) is finitely
generated as a k-algebra, Exty (M, S) is zero for m sufficiently large. Since there
are ouly [initely many isomorphisin classes of irreducible kG-modules, it follows
that there is some m such that Exty (M, S) = 0 for all irreducible modules 5.

Now consider Q™ (M). If Q™ (M) # 0, then there is a nonzero homomorphism
@ Q™(M) — S for some irreducible module S. By the assumption ¢ factors
through a projective. So if P is a projective cover of .S, then we have a commutative
diagram

Q™ (M)
8,/ Jw
) AN 0

where pf = . But because P “» S is a projective cover, § must be surjective
(by Nakayama’s Lemma). Hence Q™ (M) 4P o0 splits, so that we have a
homomorphism ¢ : P — Q™(M) with 80 = idp. This implies that ¢(P) is a
nonzero projective direct summand of Q™ (M ). This is absurd. Hence Q™ (M) = 0.
So also Q°(M) = Q™™ (Q™(M)) = 0, which shows that M is projective. 0
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Theorem 10.6 Let M, N be in ,mod. Then

Va(M @ N) = V(M) N Vg (N).

The proof that we give here assumes that the Held k is algebraically closed. In a
more general situation suitable modifications can be made.

Proof. We have homomorphisms
H*(G, M) ® H*(G,N) — II*'(G x G, M ® N) —*%%, g*(G, M @ N)

which can be used to define the cup product structure on cohomology. Note that
in the term H*(G x G, M ® N) we are regarding M ® N as a k(G x G)-module
via the isomorphism k(G x G) 2 kG ® kG. For M = N = k we have an induced
map on varieties

res”™

V(,(]C) — VGXC(k)

induced by the restriction H*(G x G,k) == H*(G,k). Recall also that we are
thinking of G as the subgroup AG = {(g, g) ‘ g€ G} of G x G. I follows from all
of this that

Vg(]\f X ]\7) = (rCS*)_l (VGX(;(]W & ]\7)).

We necd to establish two facts.
(1) Joxa(M ®[V) Jo (]\4') ng*((' k‘) +H*(G, /ﬂ) %Y J(;(]V). Here JGXg(lW & N)

is the annmihilator of Ixtygyq) (M @ N,M ® N) in the cohomology ring
H*(G x G, k)= HY(G,k) @ H* (G, k).

Proof. Let op; : H*(G, k) — Exti (M, M) be given by o (¢) = ¢ - idas. Then
there is an cxact sequence

/

A H*(Gk) 4>UM imaM — 0,

0 —  Je(M)

where op; = (im o — Extyg (M. M)) o 0, Likewise we have an exact sequence

0 —— Ja(N) Y O*(G,k) —2— imoy —— 0.

Now tensor the complexes (Jg(M) =5 H*(G,k)) and (Jo(N) 225 H*(G,k)) to
get an exact sequence
0— Jo(M)® Je(N) — Jo(M) @ H (G, k) D H (G, k) ® Jg(N)

/
TR

— H*(G. k) ® H* (G, k) 22 (imoyy) ® (imon) — 0.

But (imoay) ® (imoy) = H*(G x G, k) - idygn in Extygye (M ® N, M & N).
So the kernel of 0}, & o)y is Joxc(M & N) and has the desired form. O
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(2) Vaxa(k) = Va(k) x Va(k).

Proof. Suppose that m,, mg € Viz(k) arc maximal ideals which are the kernels of
the homomorphisms o, 3 : H*(G, k) — k. Define v : Vi (k) x Va(k) — Voxa(k)
by ¥(mg, mg) := mugg, the kernel of the homomorphism

H'(Gx G, k)= H (G k) 2 H (G k) 222 .

If m, € Voxe(k) is the kernel of ~, then define o, 5 : H*(G. k) - k to be
the compositions of v with p,v: H*(G. k) — H*(G x G. k). where p(¢) = ¢ 2 1,
v(() = 1@ . It is easy to check that ¥(m,.mgz) = m.. O]

To finish the proof of the theorem we need to notice that Vgxa(dM & N) =
Va(M) x Vg(N) by (1). Also the map Vg (k) — Vg(k) x Vi (k) induced by the
restriction of G x GG onto (' is the diagonal homomorphism. So

Va(M @ N) = (res™) ™ (Vo (M) x Va(N)) = Ve (M) N Vg (N).

11 Infinitely generated modules

In this section we wish to discuss some of the problems involved with ex-
tending some of the results to the category ;o0 of all left AG-modules. Let
w:StMod denote the stable category of all left kG-modules (cven infinitely gener-
ated ones) modulo projectives. The main thing we want in this section is to show
that _st9Mod is a triangulated category. We should recall that the triangulated
structure of ,.stmod depended very much on the fact that injective modules are
projective and vice versa. This result can be proved for large classes of rings using
various sorts of sophisticated machinery. For group algebras, however, we can stick
to reasonably elementary mecthods.

To start we should show that £G is an injective object in , 9M00. The proof of
the injectivity of £G in | ,mod used duality and requires some modification to work
with infinitely generated modules. It is still true in ;9700 that the dnality functor
( )* =Hom( k) is exact. However, for an infinitely generated module M, M 2
M**. Still, there is a homomorphisin ¢y - M — M™* given by wpr (m) (A) = A(m)
for A € M*, m € M. In addition, if M P Nisa kG-homomorphism, then the
diagram

M -2 N

J{@M J{QN

Mre T
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commutes. In particular, if M Y N with N finitely generated (so that ¢y is an
isomorphism), then the composition

—1
f** w
M 24, A N 2, N

is 8. With these observations we can suitably modify the proof of Theorem 2.6 to
get the injectivity of £G.

To get the injectivity of kG, we will need to reduce to the case that G is a
p-group. That is accomplished by the following proposition.

Proposition 11.1 Let H C G be a Sylow p-subgroup of G. A kG-module M 1is
projective if and only if My is projective. Likewise M is injective if and only if
Myr 18 injective.

Proof. If M is projective, then it is a direct summand of a free module. So My
is also projective.

Assume now that My is projective and that we have a diagram

M

A —Z B 0

in ;,~Mod with exact row. Because My is projective, there is a kHH-homomorphism
6: M — A with 00 = . Define 8 : M — A by

A 1
(9 = -1
(m) G EEG/H xf(x™ " m)

—

where the sum is over a complete set of representatives of the left cosets of H in
G. Then 6 is a kG-homomorphism and o6 = u. Hence M is projective.

A very similar argument proves that if My is injective, then M is injective.

So suppose that M is injective and that we are given a diagram

0 A —2 B

|
M

where A and B are kH-modules, the maps are kH-homomorphisms, and o is
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injective. Then we can induce to get a commutative diagram

0Oo— A —2 - B
l@A l¢B
0 —— ATC 2, p1¢

yil / )
A

Of course 01 = 10 : kG Rrg A — kG Xpy B. The map ¢4 is given by
vala) =1®a € kG ®gy A, and ¢p is defined similarly. For > z®a, € ATC
2€G/H

we define ﬂ( oox® am) = > zulay). It is casy to see that o179 and i are
*€G/H *€G/H

kG-homomorphisms. Hence the existence of ¢ is a consequence of the injectivity

of M. It remains to check that fiop4 = u. Hence the existence of woypp : B — M

proves the injectivity of M;. L]
Theorem 11.2 A kG-module is projective if and only if it is injective.

Proof. By the last result we may assume that G is a p-group. Suppose that M is
an injective kG-module. Let S := MY = soc M be the socle of M, which (since
G is a p-group) is also the set of G-fixed points of M. Let B be a k-basis for S

and let F := @ kG - y» be a free kG-module with kG-basis consisting of the set
bel
of symbols (ys)pep. Then we have a commutative diagram

o—— 5 2 . F
Ll S0

M

where ¢ is the inclusion, the kG-homomorphism 6 is defined by 6(b) := G- yp for

all b € B, and v exists by the injectivity of M. Here G = >  g. Notice that ¢
a€G
is injective because it is injective on the socle of F. We need only show that 1 is

surjective.
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Suppose that m € M and let W := anngc(m) be its annihilator in kG. We
claim that m € im. To see this we proceed by (inverse) induction on the di-
mension of W. Assume that u € M is in im+ whenever dim(anng¢(u)) > dim W.
Notice that if dimW = |G| — 1, then W = rad kG, m € S, and m € im . Now let
z € kG —W be an clement such that 2 +W C soc(kG/W). Then xm € S because
forany g€ G, (¢ — L)em € W -m = 0.

Lemma 11.3 For x and W as above there exists y € kG such that zy = G and
W.y=0.

Proof. Let A = (kG)™ be an injective hull of kG/W. So there is an injection
0 kG/W — A = (kG)™.

Let (1) = (21, ..., 2n) € (kG)"™. Then p(z + W) =z -¢(1) = (zz1,...,22,) # 0
but gz + W) € G- A= (k'é)". So xz; = aG for some i and some a € k, a = 0.
On the other hand, if w € W, then 0 = p(w + W) = w- (1) = (wz1,...,w2y,)
and hence wz; = 0. So let y = %zL O

Returning to the proof of the theorem we have that rm € S = w(é - F).
So am = w(G - f) for some f € F. Hence zm = ¢(xyf) for some y € kG as
in the lemma. Hence annkG(m — (y j)) contains both x and W. By induction
m — Y(yf) € imvy and hence m € im .

Assuming that G is a p-group we have shown that injective modules are free.
If Al is projective. then M is a direct summand of a free module and hence is
isomorphic to a direct summand of an injective. (Choose any injective module
with a basis having large enough cardinality.) But dircct summands of injective
modules are injective. Hence M is injective. 0

Notice that as a by-product of the proof of Theorem 11.2 we have that pro-
jective modules over finite p-groups are free. We knew this for finitely generated
modules.

Theorem 11.4 The category ,...st9Mod is triangulated.
Proof. The proof is the same as in Section 5. ]

We end this section with a note about direct limits (colimits). This material
is standard (see [W]). and we omit the proofs.
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Definition Suppose that

]\/11—+]\/[2—-> M;g—*

is a system of modules and homomorphisms. Then lim Af;, the direct limit or

colimit of the system, is a module such that there are homomorphisms
and the following universal property is satisfied: if for a module N and for each i
we have a homomorphism ¢; : M; — N such that

M, —% 5 M,

O'i\ / Ti41
N
commutes, then there is a unique homomorphism lim M; - N such that for each i

M, —2 lim M;

o-i\ /o-
N

commutes.

Proposition 11.5 The direct limit of a system of modules exists and is unique
up to isomorphism.

Proof. Let ~: @ M; — @ M, be given by v(m) = m—6;(m) whenever m € M.

1=

Then it can be proved that coker'y satisfies the condition of the definition. ]

Proposition 11.6 Taking direct limits is an exact functor which commutes with
tensor products (over k).

12 Idempotent modules
In this section we prove the existence of some of the idempotent modules in

the stable category ,st9Mod. The development follows the ideas of [CW] although
this is really only a variation on the original theme of Rickard [R].
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Suppose that V' C Vg(k) is a nonempty, closed, homogeneous subvariety.

Choose nonzero homogenemls elements ¢; € H" (G, k), n; >0, (i =1,...,m) so
that V = V((1, ..., Cn). Recall that for each ¢ we have a triangle (see page 60)
Le, - Qi(k) k 0 (Le,)

so that there is an exact sequence

0 —— Qi(k) _S k& (proj) —— Q71 (Lg) —— 0.

As before let C(Q,)* be the complex (€27 (k) Iy (proj)) having homol-
ogy Hy(C(Ci)v) = Ho(C(Ci)w ) = Q7!(L,). For each positive integer m and cach
i =1,....n there is a chain map

~m—1
e e 0 —— (k) ) kg (proj) —— 0

1 — j

e 0 —— omk) L ko (proj) —— 0

such that the homomorphism in degree zero is equivalent to the identity map on k.
modulo projective homomorphisms.

Now take the tensor product C™ = C(¢I. . ... CM):=CM) e @ - RC(CT)x-
Then we have a system of complexes

C),E"H_l) S C—(llmAl C(m+1 0
Cﬁ({‘m) : o ‘ Cgm) Cém) 0

given by taking the tensor product of the chain maps.

Recall that H*(C*(m)) = Hy( (mj) ® Q- (LC.Z”> and that, as in the proof of

Lemma 9.4, 0 ()¢ (m)) =Um,.... my, So there is a collection of exact sequences
E" ...
0 — U ") —— k< (proj) —— ®Q YLep) — 0
U(m)

Now we take the dual of cach of these sequences and consider the directed system
of exact sequences where the vertical homomorphisms arc induced from the chain
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maps given previously.

0 —— LW — ko (proj) —— UM —— 0

0 — > L@ ——  ka(proj) —— UBD" — 5 0

(12.1)

0 —— L®" —— k@ (proj) — > U®" —— 0

| | |

Notice that the homomorphisms in the middle column are all equivalent to the
identity homomorphism on &, modulo maps which factor through projectives.

Since the direct limit is an exact functor we obtain, in the limit, an exact
sequence

0 E ke (proj) —%— F —— 0. (12.2)

It is an easy check that k is a direct summand of the middle term. The rest is
projective because the direct limit of a sequence of projective modules is projective.
(In general a direct limit of projectives would only be flat, but in the case of
kG-modules [lat modules are projective.)

Proposition 12.1 Let M be a module in ,mod with V(M) CV=Va((1,....Cn).
Then F & M = (proj) and E® M = M & (proj), where E and F are as in (12.2).

Proof. According to the hypothesis, for any large enough integer m, we have that
Ty .., ¢ e J(M). Tt follows that for m sufficiently large the maps

crtm e M-V oM

coming {rom the compositions of the chain maps factor through projectives for all
¢ > 0. So there are chain maps of exact sequences

(r+m)

0-—ci™™eM 2 - oYM —— Ut g M — 0

| | [

(r) o (r) (
00— Ch’'®M - M — UM — 0
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We now claim that for m sufficiently large, wér,m) also factors through a projective.

This can be proved by successively applying the following lemma to the sequences

0 —— cVaem ——cem — 9T ))eM —— 0,

0 —— ac) oM croeoM —— a(cV,) o M —— 0,

n—1

0 —— ociNeM — oM —— UMeM — 0

Lemma 12.2 Suppose that we have a commutative diagram with exact rows

0 A B C —— 0
71 72 3

0 A B ——C 0
b1 Lo b3

0 A" B" —— " —— 0

and that ~v1, v2, 61, and b3 all factor through projectives. Then é3 o ~3 factors
through a projective.

Proof. In the stable catcgory we have a diagram of triangles

A—— B —— C —— QA

N

A B v C’ L) Q_l(A’)

A R

A// B// C// Q—l (AH>

Because p o 43 = 0, there must exist o : €' — B’ such that 43 = vo. But then by
the commutativity b5 0 Y3 = b30v 00 =0 in the stable category. U

Returning to the proof of Proposition 12.1 we consider the directed system
(12.1) ® M. In the right hand column we have the system

UD s M -UD" oM —

which has limit lim(U(i)* & M ) = F ® M. But any sufficiently long composition

of the homomorphisms must factor through a projective. From this we conclude
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that £ & M is projective. So the sequence
0 —E®M— (k& (proj)) £ M — F £ M — 0

is split and E @ M = Al & (proj). O

Definition Let 9y denote the full subcategory of | .stmod consisting of all
(finitely generated. left) kG-modules M with V(1) C V. Let E(V) = E and
F(V)=F for E and F in the sequence (12.2). where V = V5 ((... .. Cn).

We say that an object X in ;. st9M00d is My -local if Hom, (M. X) = 0 for
all M in f)ﬁ\/.

Proposition 12.3 Suppose that X s Ty -local and that »: k — X is a homo-
morphism. Then in the stable category o 1s equivalent to u0 for some homomor-

phism p: F(V) — X.

In other words, the homomorphism 6 : ¥ — F(V) is universal for maps from
kE to My -local ohjects. We should notice that F'(V) is itself an 9y -local object
since Homy,; (M., F(V)) = Hom,; (k, M* @ F(V)) = 0. This is true because Af is
finitely generated and Vg (M™*) = Vg (A) C V.

Proof. We know that E(V) = lim L®" is the direct limit of the system

LT 9 ot g2

So we have an exact sequence

¢ « o ~ Cx
0 —— PLY 2 PLY) —— EV) —— 0

where o(l) = | — a;(1) for { € L7, The fact that E(V) is isomorphic to the
cokernel of o is the essence of the proof of the existence of direct limits in the last
section. So the exactness of the above sequence can be established by verifying
that o is injective. This is a straightforward exercise. Now we do a triangle shift
on the sequence 1o get an exact sequence

0 —— PLO —— E(V)&(proj) —— O LD —— 0.
1—1 1=1

Then we have a long exact sequence

Pz

— Hony (P Q7! (L('i)*),X) — Hom,(E(V),X) — Homkc(é L(i)*,X) — .
=1

1—=1
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o0 * 0 £\ *
Now we claim that Hom, (€D L ,X) = 0. For suppose that f : € LW 5 X
i=1

i=1 ]
is a kG-homomorphism. Then let f; : L®" — X be the restriction of f to L()".
Because X is My -local, f; = §; o a; for some maps «; : L®" B g P— X,

00 ok 00
where P, is some projective kG-module. So let . : @ LY — @ P; be defined by
i=1 i=1

a; on L. Let - @ P, — X be given by 5(g) = 5i(g) for g € P;. It is an easy
i=1
check that Sa = f, thus establishing the claim.

Similarly, it can be shown that Hom,. (D Q’l(L(i)*),X) = 0 and hence
i=1

HomkG(E(V), X)) = 0 by the exact sequence. Now by the exact sequence (12.2) it
can be seen that

Homy (F(V), X) a

Homy(k, X)

is surjective. ]

Proposition 12.4 In the stable category ,st9Mod we have that E(V) @ X = 0
for any My -local object X. In particular, E(V) & F(V) = 0 and by consequence
EVYRE(V)ZE(V)and F(V)@ F(V)= F(V).

Proof. By assumption on X, HomkG(L(i), X)) = 0 for any ¢. Moreover
Hom, (LY ® S, X) = Hom, (S, L  ® X) =0

for any finitely generated kG-module S. It follows that LW @ X is projective. But
E(V) ® X is isomorphic to the direct limit of the system

IW'sgXx — I gx — ...

Hence E(V) ® X is projective. Furthermore, E(V) ® F(V) = 0 because F(V) is
My -local. The last statement is a consequence of taking the tensor products of
E(V) and F(V) with the exact sequence 0 — E(V) — k & (proj) — F(V) — 0.

J

Remarks

(1) The results in this direction, by Rickard [R], are much stronger than those that
we have proved in these notes. He shows that for any thick subcategory 9t
of ,stmod (“thick™ means triangulated and closed under the taking of direct
summands) and any object X of , ,stmod, there is a distinguished triangle

Es_m(X) X Jfgj((X) —_— Q_I(EQR(X))

such that &m(X) is a filtered colimit of objects of M and Fop(X) is M-
local. The conditions satisfied by Fop(X) and Fon(X) actually characterize
the triangle. We get some glimpse of this in the theorem that follows.
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(2) The relations in Proposition 12.4 are what have led us to call E(V) and F(V)
the idempotent modules associated to V. We should note that by Theorem 3.5
the trivial module is the only nonzero object in ,stmod with this idempotent
property.

(3) A direct limit as we have defined it, is a colimit in the literature. A “filtered
colimit” is a more general type of colimit which, for example. can be indexed by
certain partially ordered sets, not just the natural numbers. While the concept
is convenient for many applications we can avoid it in our considerations.

Theorem 12.5 Let V C Vi (k) be a nonempty, closed, homogeneous subvariety.
The triangle

E(V) k F(V) —— Q71 (E(V))

15 characterized by the properties:

(1) The middle term is k,

(2) E(V) is a direct limit (filtered colimit) of objects in My,

(3) F(V) is My -local.

Proof. (Sketch) Suppose that E/ — k — F’ — Q~!(E’) is another such triangle.

If we add suitable projectives, then we can construct the following commutative
diagram with exact rows and columns.

0 0
0 k F(V) ® (proj) —— Q7 '(E(V)) & (proj) —— 0
“ 0 0
0 k F' @ (proj) —— Q- Y(E) — 0
0 0

Note that 8 exists by Proposition 12.3 since F”’ is My, -local. Then ¢ is the induced
map. The point now is to show that the kernel, W, is both 9My-local (by a suitable
long exact sequence of the middle columns) and a direct limit of objects in 9y (by

the last column). Hence we must have that Hom, (W, W) = 0. So W is projective.
O
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For an easy application consider the following corollary.

Corollary 12.6 Suppose lhal Vi and Vo are nonempty, closed, homogeneous sub-
varieties of Vg (k). Then in st9od

EWV)® E(Vz) =2 E(ViNV,).
Proof. Consider the complexes (k& (proj) o, F(V1)) and (k& (proj) RZR F(V2))

where 61 and @ are surjective. Then taking the tensor product we get an exact
sequence

0 — E(V)®E(Va) 222 ko (proj) — F(V1)&F (Va)®(proj) — F(V1)®F(Va) — 0.
Let F' := coker(oy ® g2). Then from the triangle
F/ — F(Vl) @ F(VQ) —— F(V1> ® F(Vg) _— Q_I(F/>

we get that F” is My, v, -local. But also E(V}) ® E(Va) is a direct limit of objects
in My, ~v,. So the triangle

L(V)) ® B(Vy) k F’ Q" HEW) ® E(V))

is isomorphic to the triangle

E(Vl M Vz) k F(Vl M Vz) —_— Q_1<E(V1 M Vz))

13 Varieties and induced modules

We end these notes with a brief sketch of an application of the idempotent
module technology. The application is a slight generalization of a theorem due
to Dave Benson [B3]. Its proof involves several concepts which have not been
previously covered in these notes. We give a brief description of the necessary
material.

To begin we recall Quillen’s Dimension Theorem (Theorem 10.1) that

Va(k) = | resg 4(Va(k))
AcA,(G)

where A,(G) is the collection of all elementary abelian p-subgroups of G.
We say that a closed subvariety V' of Vi (k) is supported on A € A,(G) if
V C resg 4 (Va(k)). By Quillen’s Theorem every irreducible subvariety of Vi (k)
is supported on some A € A,(G).
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Now suppose that N is a normal subgroup of G and that P, =» k is a kG-
projective resolution of k. Then for each n > 0, Homgn (P, k) is a kG-module
by the action (gf)(z) = f(g z) for g € G, x € P,. Note that N acts trivially.
So we may also consider Homyn (Py, k) as a k(G/N)-module. Hence the complex
Homgn (Py, k) is a complex of k(G /N)-modules, and we have an action of G/N
on H*(N,k). It follows that there is also an action of G/N on Vy (k) induced by
the action on H*(N,k). That is, if m is a maximal ideal in H*(N. k), then so
also is g - m for any g € G. Clearly the action takes closed sets to closed sets and
homogcneous subvarieties to homogeneous subvarieties.

With these notions we are prepared to state the application.

Theorem 13.1 Let A be an elementary abelian p-subgroup of G and C := Cg(A).
Suppose that V- C Ve (k) is a homogeneous subvariety which is supporled on A.
Assume also that

(i) for g € Ng(A) — Ca(A) we have g(V) NV = {0} and
(ii) for g ¢ Ng(A) no point of V is supported on AN gCg~t.

Let W = tes; (V) C Vg(k). If M is any finitely generated, indecomposable
kG-module with V(M) C W, then for some kC-module L

L19 = M & (proj).

Proof. (Sketch) The whole trick is to show that E(1W), the idempotent module
defined in the last section, is induced from a kC'-module. Specifically we can prove
that EC(V)TG =~ E(W) & (proj). Then, by Frobenius reciprocity, if V(M) C W,
then

M & (proj) = M & (E(W) @ (proj)) = (Me @ Ea(V))1°,

So suppose that L is the nonprojective part of Mc ® Ec(V). Then L is a direct
summand of LT¢ le, and hence L is indecomposable, finitely generated and is the
nonprojective part of M | . Clearly L9 = 0 @ (proj).

So it remains to show that EC(V)TG =~ E(W) & (proj). For this we use the
characterization of the triangles in Theorem 12.5. First consider the triangle

Ec(V) —<— &k Fo(V) —— Q7Y Ea(V)).

In ;~Miod we have a homomorphism ¢’ : Ec(V) — k which represents o and in
e Mod we get homomorphisms

(EC(V))TG RN kCTG — k.
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Here ¢ is the usual augmentation map, taking > . z®a, € kG ®rc k to the

2eG/C
sum Y. a; € k, and ¢ is the induced homomorphism. Now we complcte € o &
zeCG/C
to a triangle
Bo(V)T9 —22 F— @ Y (Bc(V)T9). (13.1)

Our aim is to show that the triangle (13.1) is equivalent to the triangle for E(W).
To do so we need only verify two things.

(A) EC(V)TG is a direct limit of finitely generated modules whose varieties are all
in W.
This point is relatively easy because E¢ (V') is the direct limit of the system

Ly Lo

of kC-modules with Vz(L;) € V. Then EC(V)TG is the direct limit of the system
LIT(’ — LQTG — +--. By the Eckmann-Shapiro Lemma for Ext

Extio( L% =Bxtio( L),
and it can be shown from this that

Vo (L) = rest o (Ve (Li)) € W.

(B) The third object, F’, in the triangle of € o ¢ is My -local.

Suppose that M € 9y. We want to show that Hom, (M, F') =
Hom,(k, M* @ F') = 0. It will certainly be sufficient to show that M* @ F’
is projective. At this point we need to appeal to the infinitely-generated-module
version of Dade’s Lemma in [BCR2|. A brief explanation goes as follows.

First let K be an algebraically closed extension of k of large transcendence
degree. For A € A,(G), assume that A = (z1,...,2z,) = (Z/p)". A cyclic shifted
subgroup of KA is a subgroup of the units of KA of the form (u,) with u, =
14+ > ai(x; — 1) for a = (aq,...,an) € K™ — {0}. Each cyclic shifted subgroup

i=1
(ug) defines a line £ C Vi (K) which consists of all maximal ideals which are the

kernels of homomorphisms to K which factor through the restriction to K{us).
The extension of Dade’s Lemma to infinitely generated modules says that a kG-
module is projective if and only if (K ® M) |(,,) is a projective K(uy)-module for
all @ € K, o # 0. Chouinard’s Theorem says that M is projective if and only if
its restriction to A is projective for every A € A4,(G).

So the question of the projectivity of M* & F' is reduced to the question of
the projectivity of the restrictions of K ® M*® F” to the cyclic shifted subgroups. If
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either K @ M* or K ® I' is projective as a K (u,)-module, then so is K & M™® F'.
So it is only necessary to check the projectivity at points a corresponding to lines
inV (or resi; (V) = W) because for all other s, (K 2 M) |, is projective as
Vo(M)CW.

Hence we need only look at the restrictions of F” to {(u,) for a € V4(K) and
resg 4(a) € K ® V. Now, by the Mackey formula

EcW)T1a2 Y (@@ EWV)) lanece T
z€A\G/C

and the restriction of € o & to each factor is again a composition

A
(T®E(V)) iAﬂer—l T - kAﬂl‘Cw—lTA — k.

Now consider the conditions (1) and (ii) of the theorem. These conditions assure
that if 2 ¢ C, then K@ ((z Q@ E(V)) | anzco— TA) is free as a K (u,)-module. On
the other hand if x € ', then we may assume that x = 1 and that the triangle of
the restriction of £ o g to A is just

E (V) —7— k

Fa(V) —— Q_l(EA(V')).

the trianglc of idempotent modules for V' = resaA_l(V). (Note here that resg, 4 is
injective on V' C V4(k).) So 1® & is a K {(u,)-isomorphism in the stable category.
From this we get that

TG 1@(506’)

K& E(V) K

is a K(uq)-isomorphism in the stable category ., ,st9od. So the third object
K ® F' is projective as a K (u,)-module. O

Remark Benson’s original theorem [B3] was stated only for the case that W is
a line in Vi (k). That case can actually be proved without appealing to infinitely
generated modules. The techniques of [C3] can be easily gencralized to show that
(with W a line) there exist positive integers [ and m and a kG-module L such that
there is an exact sequence

0 L (Q(k))™ & (proj) —— kel —— 0

where the kerncl L has the property that V(L) "W = {0}. Hence if M € My,
then M ® L is projective. So

M™ & (proj) = Q7' (2 (k)™ @ (proj)) © M @ (proj)
~ 0~ (ke1% @ M) & (proj) = 0~ (M%) @ (proj)
o (Q—Z(MC))TG & (proj).
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So by the Krull-Schmidt Theorem M & (proj) is induced [rom a kC-module.

Interestingly, this proof does not seem to generalize to give Theorem 13.1.
The proof used transfer maps and worked well as long as ordinary cohomology
was considered.

As an application of the theorem we consider the example of GG being a Sylow
2-subgroup of SL(3,2"), with p = 2. The reader should notice that the same idea
will work for p odd and G a Sylow p-subgroup of SL(3,p™). However, the notation
is slightly more complicated.

The field Fy» can be written as Fyn = Fy(w) where w is a primitive (27 — 1)

root of 1. Then the set {I,w,...,w™ 1} is a basis for Fon over the prime field Fs.
Let
1 w1 0 1 0 O0 1 0 !
T; = 1 0 Y, = 1 ot |, 2= 0
0 1 0 1 0
Then G is generated by x1,...,&,, Y1, -, Yn, and the center and commutator sub-
group of G is generated by =z,...,z, Let A := (x1,...,x,), so that

C=Cg(A)=(x1,...,Zn,21,-..,24). Both A and C are elementary abelian and
C <1 G. Notice also that if ¢ € G — C, then Ca(g)NC = Z(G) = {z1,...,2n).
Now C 2= (Z/2)*™ with the vector (ay,...,Qn,B1,...,08,) corresponding to the
element || azf‘sz The elements of G act linearly on C, by conjugation. For g € G

1]
the matrix of g on C has the form
id, 0
Ay idy
where id,, is the nxn identity matrix and A, is an nxn matrix with coeflicients
in Fy. The main observation here is the following.

M, =

Lemma 13.2 Suppose that g ¢ C. Then A, is nonsingular.

Now H*(C,Fy) = Fo[X).. ... Xn.Z1,...,Zy] is a polynomial ring in 2n vari-
ables. The monomials of degree one, X;,...,X,,Z1,...,Z,, form a dual basis to
the basis z1,....Zpn,21,-...2, of C. Furthermore Vo (k) = k%" is the dual space
for k @z, H'(C,F2) = HY(C, k). By the double dual theorem Vo (k) = k &z, C,
where C is regarded as the vector space F2". Hence the action of g € G on Vi (k)
is also given by the matrix Mg, except of course that we must regard M, as a
matrix with entries in &£. Then from the theorem we get the following proposition.
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Proposition 13.3

(i) In the above notation let V = { (o1,...,an,0,...,0) | Qly...,0, € k}
Ve(k). If M is a finitely generated kG-module with Vg(M) C Tes; o (V)

then M = L1¢ @ (proj) for some kC-module L.

(ii) Suppose that H = SL(2,2™). If M is a kH-module with Vi (M) C resyy o(V),
then M is kC-projective. .

Proof. 'The point is that for g ¢ C, VN g(V) = {0} by the nonsingularity of the
matrix A,. Hence the result (i) holds because of the thcorem. For (ii) we need only
notice that M is a direct summand of Mg 1™ since [H : G] is prime to p. But by (i)
M is induced from C. So M is a direct summand of a module induced from C.

O

The example can be generalized further to most root subgroups of a Chevalley
group in the defining characteristic. But that requires much more notation and
analysis.
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